SySTEMA

SYstem & Safety Tool for Executing Model-based Analyses

Alessio Costantini, Fancesco Inglima, Rodolfo Mazzei, Sergio Di Ponzio
System Engineering Local Expertise Center
ALTRAN ITALY
alessio.costantini @altran.com, francesco.inglima@altran.com,
rodolfo.mazzei @altran.com, sergio.diponzio@altran.com

Andrea Chidllini, Cristina Biagi

RAM and Safety Local Expertise Center
ALTRANITALY
andrea.chiellini @altran.com, cristina.biagi @altran.com

Copyright © held by the authors.

Abstract — This paper presents SySTEMA, an innovative
approach to perform Safety Analyses on complex systems, based
on the modeling of their functionalities, behaviors and
architecture. System safety analysis techniques are well known
and are extensively used during the design of safety-critical
systems. Since these analyses ar e highly subjective and dependent
on the skill of the practitioner, it is unlikely that they will be
complete, consistent and error free. In fact, the safety engineers
devote much of their effort to find undocumented details of the
system behavior and to embed this information in the safety
artifacts such as the fault trees. Most of the review effort is
focused on uncovering and resolving misunderstandings and
missing information in the system design or the informal fault
model. Model-Based Systems Engineering (MBSE) is a
methodology aiming to design and develop complex and/or
critical systems, increasing productivity by promoting
communication among different teams working on the same
project. Model-Based Safety Analysis (MBSA) is an emerging
discipline that extends MBSE performing safety analyses in a
‘model-based’ context, by building system models (both for
nominal and fault behavior), reducing the effort and increasing
the quality of the final results. MBSA follows a failure analysis
approach, starting from the major state-of-the-art techniques
such as Failure Mode Effect and Criticality Analysis, Functional
Analysis, Functional Hazard Analysis and Fault Tree Analysis.
This paper describes a theoretical approach to implement MBSA
using one common SysML model of the system. This allows the
systems engineers to perform automated safety analyses to
receive quick feedback on their design decisions during the
system design phase.

Keywords—MBSE; MBSA; SysML; FMEA; FTA.

. INTRODUCTION

SYSTEMA ("System & Safety Tool for Executing Model-based
Analyses") is an innovative gpproach that will alow to analyze the
Safety of complex systems, which typicaly are used in the field of
aerospace, defense, rail and automotive industries.

Safety analyses are currently carried out to support the design of
"safety critical” systems, according to a traditional approach, i.e.
starting from the documentation usually drawn downstream of the
detailed design of the system.

As a consequence, this approach often leads to analyze the system
safety late and in ineffective way.

Moreover, being based on the interpretation of the documents
describing functionalities and architecture, these analyses can present
problems of completeness, consistency and subjectivity, because
highly dependent on the experience of the Safety engineer performing
the activities.

The proposed project aims to overcome the above cited problems
by using an approach based on the realization, through the use of a
graphical language standard, called SysML, of a unique model, which
is representative both of the functional/architectural characteristics and
of the behavior of the system when afailure occurs.

Specifically, the idea is to define the most appropriate
methodology to mode the fault types and the effects that they may
have about the different features of the system.

The main objective of the proposed project is to redize an
innovative tool (SySTEMA) to perform Safety Analyses on complex
systems, by using Systems Modelling Language (SysML).

MBSA modelling approach has been evaluated by comparing
FMEA and FTA analyses carried out with traditional methods with the
ones generated by SySTEMA (MBSA toal).

mailto:alessio.costantini@altran.com
mailto:francesco.inglima@altran.com
mailto:rodolfo.mazzei@altran.com
mailto:andrea.chiellini@altran.com
mailto:cristina.biagi@altran.com

Il. BACKGROUND

This section briefly describes the steps in the SysML modelling
and safety analysis process considered in this study.

A. SysML Modeling

The SysML approach used in this study considers the operational
anaysis, functional analysis and architecturd analysis[1].

The operational analysis will define the main use cases (UC) of
the system, with a particular focus on the UC significant from a safety
viewpoint. The primary goals of this analysis shall be:

« The definition of the system environment from the user
perspective, by identifying all the entities that directly
interact with the system (actors).

» Theidentification of the most significant UCs from a safety
standpoint, to be detailed by the functional anadysis.

The functional analysis will allow to summarize the key functions
of the system when it isin a specific UC. Each main function will be
decomposed in lower hierarchica level functions that can be
furthermore decomposed following an iterative process, in order to
obtain a functional breakdown. The lowest functional level will be
mapped to an architectural subsystem or component (allocation).

The functional analysis will dso allow to represent the system
behavior, which can be modelled by means of different behaviora
diagrams:

« State Machine Diagrams (SMD), to represent the states,

the transitions and the actions that the system will perform
in response of well-defined events.

» Sequence Diagrams (SD), to represent the event-based

behavior, representing flow of control and describing
interactions among system parts.

The architectura anadysis will allow to describe the system in
terms of internal components decomposition (subsystems or
components) and functional interfaces description. Typica diagrams
used in this phase are;

« Block Definition Diagrams (BDD), to define the system,

by means of associations and composition relationships.

* Internal Block Diagrams (IBD) to describe the structural
aspect of the mode, defining how the different items
collaborate and exchange information to redize the
behavior of the entire system

Functional and architectural analyses are typicaly performed in
parallel, through an iterative process which will converge towards the
final system architecture. Once the two analyses will be complete,
each function should be mapped to only one architectura element.

B. Classical Safety Analysis

The classical safety analyses considered in this study are the
Failure Mode Effects Anaysis (FMEA) and the Fault Tree Analysis
(FTA).

The FMEA is a “bottom-up” analysis based on a single-failure
approach and executed on each system item or functiona block,
according to the following main steps:

» |dentification of credible failure modes;

» Evaluation of each single failure mode effects at different

levels up to system one;

» Evaluation of severity of the failure effects consequences,

» |dentification of failures detection method;

» Assignment of the failure mode rate based on item

reliability and apportionment criteria.

A FTA is a modd that graphically and logicaly represents the
combinations of failures occurring in a system that lead to an
hazardous condition.

FTA uses a “top-down” approach, in order to identify all potential
causes of aparticular undesired top event.

Starting from the Top Event, the analysis systematicdly
determines al possible causes, both single fault and combination of
faults, at the subsequent lower levels untii a Basic Event is
encountered.

A Basic Event is defined as an event that is no further developed
into a lower level of detall. If a basic event is attributed to items
failures, it can be extracted from item faillure modes analyzed in
FMEA.

As shown in Fig. 1, the fault tree development includes two types
of symbols: event and logic gate. An event symbol is used to describe
an existing condition or a physical event. A logic gate is used to tie
together the events and to show the logical relationship among them.

TOP EVENT

FMECA

Fig. 1. FTA Eventsand Gates

This FTA method produces Boolean logic models representing the
logic relationships between events leading to a fina condition. The
Boolean model is suitable to produce both qualitative and quantitative
results. The qualitative results of the Fault Tree model is represented
by the posshility to have a clear understanding of al the
combinations of failure events, which can cause the '‘top event'
(Minimal Cut Sets). As for the quantitative aspect, the logical model
of FTA is moreover suitable to evaluate the probability of occurrence
of the top event based on the failure rates of basic events, exposure
times, and the Boolean Modd that is a the base of the Fault tree
development.

I1l. SYSTEMA APPROACH

SySTEMA approach consists of aframework for System Engineer
and Safety Engineer containing:

* Theory and Fundamentals: definition of the theoretica
approach representing the foundations of SyYSTEMA

* Operative Guideines. definition of modelling rules,
constraints and step-by-step descriptions of actions to be
performed with atool.

» Atool: Commercial Tool + Altran SW Application.

» A proof-of-concept (demonstrator): atangible model of a
case study to see how FMEA and FTA anayses can be
automatically performed by the SySTEMA tool.

The theoretica approach develops a process that leads the
engineers to develop a modd of the system on which the
SY.S.T.E.M.A tool can automate the generation of FMEA and FTA
analyses.

A. Process

The process of SySTEMA is shown in Fig. 2. It is divided into
three main phases and consists of seven steps that engineers need to
follow in order to automatically generate the FTA and FMEA
andysis.

The process includes a phase in which to update and enrich the
SysML model according to the criteria described in the following
chapters. If the model does not exist, the same criteria can be used to
define the entire architecturd model of the system. The god is to
extend the model with stereotypes allowing to the SySTEMA tool the
interpretation of the system information and produce the analysis.
Furthermore, the approach describes the way to define the operations
and their alocation in the same modd. Finaly, not least, this first
phase defines the way for the alocation of the failure modes in the
model. The definition of failures remains an activity related to the best
practice of safety domain.

In the second phase of the process, the engineers shal model the
system in nominal behavior and in presence of failures. The modeling
of the behavior takes place through an abstract way, very close to a
logic level description of a system, but which can be used both to
describe the high-level functiona behavior and the lowest level
physical one. The description of behavior is a sequence of messages
with abstract parameters. This permits to describe any system as an
algorithm, using three fundamental constructs (Béhm-lacopini, [2]):
the sequence, the selection, the selection and the cycle (iteration). This
approach can work thanks to abstraction of the logic of VALUE TAGs
(described in par. V.B), that alows to express more stuations
(functiona, logical and physical) with a language easily integrated in
the FMEA and FTA formal output.

Findly, in the last phase will be defined a scenario trough a Use
Case of the system in order to obtain the FMEA and FTA
automaticaly. In the next paragraph the three macro steps of the
process are described in detail.

e
1| \ T \

Architecture Update

De‘fiﬁlon Allocation

|
/L

Fig. 2. SySTEMA Process

B. Tool

SySTEMA tool is a genera purpose tool that can operate with
different MBSE commercia tools in order to obtain the automatic
generation of safety analyses. For this study it has been developed
only an interface for Artisan Studio. The output of the tool is an Excel
Sheet.

The tool can simulate the behavior of the model thanks to the
SySTEMA profile defined in the MBSE tool with custom stereotypy.

The graphical output of FTA, in classica view, is made by a
commercial tool.

The entire tool-chain is described in figure 3, the MBSE tool isthe
base of information of the model. Through a Visua Basic (VB)
software, the static model is ssmulated in order to obtain the FMEA
and FTA analysis. The VB software provides a tabular output suitable
to be manipulated to obtain atypical output of safety analysis.

e == HMI Nominal Behaviour

=

Model selected: MBSAv2.4 ——— Failure Behaviour

R v EC = :

—,,/ 2. o smnes | Nominal vs Failure
1
Simulation ‘“‘”W’" .
Engine VB-ILEt .

~ I}

Table of =
logic
conditions

Fig. 3. SySTEMA Tool-Chain

IV. SYSTEM’S ARCHITECTURE MODELLING

The system architecture has to be adapted according to the
guidelines & fundamentals and enhanced with dedicated stereotypes.

A. System Architecture Update

Starting from an existing (and maybe complex) mode of the
system architecture, System and Safety Engineers will have to identify
the levels of interest on which SyYSTEMA will be able to perform the
Safety Analyses.

The architectural level of each block will be “classified” through a
specific stereotype (see Fig. 4) in order to identify three indenture
levels of interest, required to perform the FMEA analysis according to
MIL-STD-1629:

* <KLocal Leve>: level of the specific item being analyzed.

+ KNext Higher Level>: next higher indenture level above

the indenture level of the specific item being analyzed.

* «KEnd Level>»: the highest (root) indenture level.

Typicaly, the «Loca Level> is associated to ‘“elementary”
blocks of system architecture (items not further devel oped).

=
d-—v—{ <<End Level>> |
— o oL

—— —————

O—i <<Next Higher Level>> |

— e

<<Local Level>> |

Fig. 4. Architectural Update

SyYSTEMA will use the system structure, described through an
Internal Block Diagram (IBD) (see Fig. 5), to extract the
i nterconnections between the el ements of the system.

All the connections must be modelled by means of:

» Connectors between elements (SysML Block Properties)

» Connectors between ports

— — Vj;"\u::—nl_
. :
oo S~ o
= 3 == Swacor Launce
i “
= 0
& o 1

Fig. 5. Interconnections between elements

SySTEMA can manage different levels of the system architecture

and the corresponding levels of abstraction:

» Functional architecture, which defines a solution-
independent representation of the design; it is composed by
pure functions.

« Logical architecture, which represents an intermediate
abstraction between functiona and physical architecture.
Blocks of a logical architecture represent abstractions of
physical solutions.

» Physcal architecture, which gives the physical resources
to perform the system functions.

For each level of abstraction, the architecture will contain several
blocks implementing high-level or low-level functions. In SysML,
when a function is defined in a block, it is called Operation. An
Operation is the specification of a behavioral feature of a block, at any
level

B. Operations definition and allocation

Functional analysis, already performed by Systems Engineers on
existing systems, will be used by SySTEMA as a reference for the
“Operation Definition”. No particular constraint is imposed to
functional andysis, thus it can be performed according to the
identified level of abstraction. In functional architecture the operation
of a block is drictly connected to the system functions. In
logical/physical architecture each block can have one or more
operations, according to design choices; as an example, a System
Engineer can split a function into more than one operation of a
component, or can group more functions in an operation of a
component (see Fig. 6).

Functions Operations Functions Operations Functions Operations

o~ PN N N N

/P Sy el \ [P E@ n:,‘\' / \ A%\

[R -#—T_a" onz | [97 | [® “<Z> p2 |

: e op2 | [s —] oo | T o ‘

\ T—pops | \ % o) \ T Roes |
Fa—— Opa / \ F4 \ / \ F3——% op4 /

\ 7R % N/ /N7

1-to-1 ~ N-to-1 1-to-N

Fig. 6. Functionsvs Operations

The operations must be hierarchically traced among the levels of a
system, in order to propagate the effect of the operation from local
level to system level (see an example in Fig. 7). The hierarchy
depends on the Operation Definition and it will be defined by means
of a specific stereotype. In this way it will be possible to identify for
each operation its Father Operation.

Operation A

System Level . Father
Operations .

Operation A

Operation B

Operation C
Next Higher level |

Next Higher level

Operation B | Operation A

Operation C | Operation A

Operation D | Operation B

Operation E
Local level

Operation D ‘

Operation E | Operation B
Local level ‘

Fig. 7. Hierarchy of Operations

C. Failure modes allocation

Failure modes identification is a safety activity that consists in
generating a list of failure modes for each architectura block of the
system, classified in the BDD as «<Locd Level>>.

Failure Modes are characterized by the following features:

» Failure Description: description about how a failure

occurs (free text).

» Failing Entity: type of failure.

» Failure Behavior: input for Integrated System Behavior

Modelling.

SYSTEMA dlows to manage any type of failure modes,
depending on the level of abstraction assigned to the «Local Level>>
blocks. This goa is achieved by considering the following failure
modes types:

* OUTPUT: failure mode affecting the out-coming signa of

a<«Local Leve> block.

» FUNCTION: failure mode affecting the function of a

«<Loca Level> block.

+ COMPONENT: failure

components.

mode affecting physica

For physica architectures the failed output will be a physica
signal, for functional architectures the failed output will be afunction.

For physica architectures, the failure will affect one or more
physical signals of the failed block, for functional architectures the
failure will affect one or more functions of the failed block (see Fig.
8).

Component failures are applicable only to physical architectures,
including for example (not exhaustive list): Mechanica parts,
Switching devices, Capacitors, Connectors, Integrated Circuits,
Optical, Lamps, Resistors, Semiconductors, Microprocessors.

The output failure modes currently managed by SyYSTEMA are:

» Analog Signals (threshold, single value):

- Loss
- Above/Below Threshold
» Analog Signals (boundaries, in between):
- Loss
- Out of Range
- Stuck in Range
« Digita Signals (boolean):
- Stuck at logic HIGH
- Stuck at logic LOW
« Digita Signals (enumerated):
- Stuck at specific value

The function failure modes currently managed by SySTEMA are:
* Anaog Signds:
- Double set of analog signals
- Short from In and Out

- Short From In and Out with set of athird signal
(Status signd)

» Digitd Signas:
- Double Stuck at logic level HIGH or LOW
- Short from In and Out

- Short From In and Out with set of a third signa
(Status signa)

For each local level block, System Engineers will have to allocate
failure modes to model through stereotypes.

Function/Component failing entities will be associated to
operations and Output failing entitieswill be associated to signals.

List of Failure Modes

Fig. 8. Failure modes allocation to model

V. SYSTEM BEHAVIOUR MODELLING

The system behavior follows two scopes. definition of the
behavior and its modeling. The definition (see Fig. 9) is an activity
that has to be performed by both system and safety engineers, in order
to obtain the information useful to mode the behavior. Based on the
definition, the system engineers shal model the behavior. This model
use an gpproach based on the Sequence Diagram described in the next

paragraph.

1. Scopes definition 2. Scopes implementation

= im '-‘

Safety .
Fallure Modes AY engineer 2T ‘|
Definition o ey

Failure Modes

Modelling
o ————— e i ——
If | If [
e R | % |
4l | e il ™
= 1.4 | - & |
desiil] 'T: I Faulty Behaviour II E:;xw F“ il rT\ I Faulty Beha\nnur |
snee g l Definition _}) Modelling __J

Integrated System
Behaviour Definiton

Integrated System
Behaviour Modelling

Fig. 9. Behaviour definition and modeling

A. Message-Based Approach

System behavior is described by means of Operations described
with the Message-Based Approach (MBA).

MBA consists in the usage of sequence diagrams (OSD) to
represent the interaction among elements/components/items of a
system as a sequence of message exchanges.

Messages can be externa events, signals or failure events. The
interaction can be:

» between the system and its environment (external event)

* between the eements/components/items of a system

(signals)
» by meansof afailure mode (failure events).

Messages can have parameters representing the information
content.

Parameters must assume specific tag values, corresponding to the
state of the signa s (i.e. input or output of the associated operation).

B. Operationsand Tag Value

An operation describes how the input affects the output according
to a cause and effect principle (see Fig. 10).

Tag values represent the foundations of MBA, because they are
used to describe different states of input and output signals (see Fig.
11).

The approach requires to treat a component as a black box and the
associated operation, which “transformsS” inputs into outputs, is
assumed to be a cause-effect.

Input signals

Tag Values

Output signals

Tag Values

Values
- IN RANGE
OUT RANGE

How
input values
affect
output values

Fig. 10. Cause-Effect

The state of inputs and outputs will depend on the context of the
considered system. It can be a classification or a grouping of the real
values of a signa; eg. Analog Values in a Range or out of a range,
digital signa in a specific discrete values (see next figure). Otherwise,
it can be a specific condition of asignal or afunction (i.e. signal loss,
missed function and active function). Finally, it can be a condition
which may be considered vaid for different values over time in the
specific analysis. In this way also the temporary effect can be handled
inasingle state.

Real Values

Tag Values

Fig. 11. Tag Vaue

The Operations can describe different levels of abstraction by
using different classifications of tag values (corresponding to different
states of inputs and outputs).

C. How to define Tag Values

Tag values will depend on the level of abstraction. Inthe Fig. 12is
reported an example. The example of the light in a room allows to
understand how the Tag Value, using different meaning of the tags,
can help the engineer to work at three level of abstraction. In
functional description, the operation has the functionality to light the
room. This functionality, in a logica view, can be considered as an
ON/OFF dignal, able to switch on/off a light. In the physica level,
after some design choices (use the 220V voltage and physical contact),
the operation describes the physical behavior of the switch.

Functional —
X1: LIGHT up aroom Y1: LT ROOM
NO LIGHT UNLIT ROOM
Logical
Xl: ON Y1: SWITCH LIGHT ON
OFF SWITCH LIGHT OFF
. X1 220V
Physical
Y1: 220V
X2: CONTACT NO 220V
NO CONTACT

Fig. 12. Tag Vaue at different levels

D. Failure modeinjection

Failures will affect operations depending on the failure mode type:

* Output failure will impose the tag vaue to the associated
signal, seeFig. 13

* Function or component failure will impose the behavior
to the associated component: see Fig. 14

Both failures can generate new tag values for the output of the
operation.

Failure event: Y1 = OUT OF RANGE

Y1: OUT OF RANGE

X1: TRUE Y1: IN GE

Fig. 13. Output Failure

Failure event: X1 SHORTEDTO Y1

)
X1: 220V \/ V1220V

Fig. 14.« Function or component failure

A failure mode could require the definition of new tag values
(w.rt. the nomina behavior) in order to manage the following
behaviors:

+ Behavior associated to an internal failure of the block itself

» Behavior associated to input signds affected by a failure

which has not been previousy managed

Failure modes Failure modes

f —| failure inputs [\/

Nominal Values
IN RANGE

Nominal Values
TRUE How the failure input values
FALSE affect output values AND

New Values
LOSS How the internal failures

DEGRADED affect the output values

OUT RANGE
New Values
LOSS
BROKEN
DEGRADED

Fig. 15. Failure impact beetwen components

Tag values will depend on the level of abstraction. The failure
mode could use new tag values (bold), see Fig. 16.

Functional
X1: LGHT up aroom ¥Y1: LIT ROOM
NO LIGHT UNLIT ROOM
BAD LIT ROOM
Logical
X1: ON ¥1: SWITCH LIGHT ON
OFF SWITCH LIGHT OFF
INTERMITTENT LIGHT
X1: 220V
Physical
ABOVE 220V T 2200
X2: CONTACT NO 220v
NO CONTACT :gg‘:“:-c:zw
BOUNCE

Fig. 16. Failure Tag Valuein different levels

E. Cause and effect

The fundamental assumption in MBA is «lf Causes Then
Effects». MBA will use the constructs defined as follows:

TABLEI. CONSTRUCTS

ID Construct

If Causes then Effects

If Causesl OR Causes2 then Effects
If Causesl AND Causes2 then Effects

WIN P

* Causes: Start, Input Messages, Sequences.

« Effects: End, Output Messages, Sequences.

* Sequences. combination or loop of multiple constructs
(ID1, ID2, 1D3).

Similarly to Béhm-Jacopini theorem, it is assumed that any
operation can be implemented by using only the following elementary
structures (to be applied also recursively): the sequence, the selection
and the cycle (iteration).

All the above cited structures are part of the OSD semantic, as
reported into the following table:

TABLE II. TABLE STYLES
Structure Element SysML OSD
the sequence SEQ
the selection SEQ,ALT and PAR
the cycle (iteration) LOOP

For this reason, SYSTEMA makes use of OSDs to model an
operation as in the examplein the Fig. 17.

Input Output
signals | signals
Tag Values Tag Values

the sequence == s, e

the cycle/ :

(iteration)

st Mansge Pt et

’\;auses
3 o
5

X

Effects

y

the selection

Fig. 17. Sequence Diagram for Cause-Effect behavior

The failure can be represented by a single message (failure in
output) or by a sequence of multiple messages (failure in function or
component).

Messages

Failure Event Signals

Single message
(Output failure)

Multiple messages
(Function failure)

Output Imposed

Behaviour Imposed
Failure Modes

Fig. 18. Sequence Diagram for failure

State Diagrams (STD) and Activity Diagrams (AD) can be used in
SysML to describe sequences, selections and iterations, but they are
not the right diagrams to implement the MBA because:

OSD is a more intuitive diagram to implement a cause-
effect logic. The typicd OSD steps (seq, dt, par, loop)
can be easily mapped to the MBA construct (Sequence,
Selection, Cycle);

= Description of messages exchange between blocks is

more complex with STD or AD, than with OSD;
= In STD most of the MBA constructs have to be described
in text mode and not in graphical mode;

= |t is easer to implement a Reverse navigation for FTA
(to perform a top-down approach), by using OSD than
STD or AD;

= STD and AD arelessintegrated with IBD than OSD;

= OSD can be added as a new layer to an existing model
behavior, with no impact to the aready defined states of
ablock.

V1. SIMULATION & OUTPUT GENERATION

SySTEMA will generate the FMEA and FTA output, through
simulations of system behavior.

A. Preliminary operations

The simulation is configured by means of Use Cases diagrams.
UC represents the operative scenario inside which the system will
operate. Use cases will consist of the following entities:

= Actors (operator, user, environment, ...)

= System under andysis

= Externa events

System behavior is strictly dependent on externa events. In
SYSTEMA Use Cases will be described through OSD, as in the
following figure. The actor, through externa signds, stimulates the
system in a specific scenario. Different uses of the system will be
described by different use cases.

— Entities ~

Power-On

>

Mode-Selection Launch

Press Launch

4

External Events

Fig. 19. Simulation Scenario

In FTA simulation, for each use case (in a specific state of the
system), Safety Engineers will have to identify the undesired top
events, on the basis of the hazard analysis performed with the classical
methods.

B. Simulation of System’s Behaviours

The core of Safety anadlyses generation is represented by the
simulation of System behaviors:

= Nominal behavior simulation: values assumed by all
the output signals (one value for each system statusin a
specific Use Case) without failure injection.

= Failure behavior smulation: values assumed by all the
output signals (one vaue for each system status in a
specific Use Case) upon injection of one or any
combination of failures.

Safety analyses generation relies upon the organization in different
databases (tables) of the integrated information relevant to the system
definition:

= List of functions: table reporting the functions

breakdown structure (hierarchy and dependency).

= List of sysem: table reporting the system breakdown

structure (hierarchy and dependency)
= List of outputs: table listing al outputs and providing
also the reference to the relevant block within List of
System.

= List of failures: table listing al the failure modes and
providing also the reference to the related failing entity
within List of outputs (output failure) or within List of
functions/System (function/component failure).

C. FMEA Algorithm

The FMEA agorithm consists in the comparison of the nominal
behavior with faulty ones (i.e. corresponding output values) in order to
identify impacted outputs and involved functions, as shown in the
following figure.

Nominal behaviour simulation

y lation (= 1 Failures)

o

system

A55_BLOCK z
LOC_BLoCKa $; ouTL |10
Loc_sockz [fiss oura|io |
Loc_sockz il ours|io
Loc_swocky|ybe_our2|io

(o< BLocLo!

Impacted
Outputs

A | NOMINAL VALUE | NOMINAL VALLE
B} NOMINAL VALUE | NOMINAL VALVE
\NominaL vale | nowiar vawwe
Viowmar vaie | nommaLvawe
ROMINAL VALUE | NOMINAL VALE
310 Function 7 | \JDMINAL VALUE | NOMINAL VALUE

NOMINAL VALUE

NOMINAL VALUE | NOMINAL VALUE

Involved
Functions

Fig. 20. FMEA algorithm

Since SySTEMA compares output values to define failure effects,
the goal to generate a FMEA, according to MIL-STD-1629, is
obtained by classifying system outputs on 3 different levels:

« LOCAL LEVEL OUTPUT: output signa from Loca

(Component) leve block.

» NEXT HIGHER LEVEL OUTPUT: output signal from

any intermediate level block.

+ SYSTEM LEVEL OUTPUT: output signal from System

block.

According to MIL-STD-1629, FMEA output is provided in
tabular format asthetablein Fig. 21.

Each effect reports the list of affected
output(s) and relevant involved functioni(s)

A

[Next Higher Level Effect
Affected output: [Affected output:
LOC_OUT (Is: FAIL_VALUE, JASS_OUTZ (Is: FAIL_VALUE, |5vS_OUT1 (is: FAIL_VALUE,
Should be: NOMINAL_VALUE) [Should be: NOMINAL_VALUE) [fShould be: NOMINAL_VALUE)
Involved Function: Ivolved Function:
Function F |Ass Funetion C

Failure Mode Local Effect System Effect

LOC_OUT1 failure

Affected output:

LOC_BLOCKL functional failure

involved Function:
Sys Function A

LOC_BLOCK1 component failure

Failure Modes SY.5.T.EMA List of Failures Table
are available Failure 1d__|Failure ilure Mode 1D [Failing
Failure_1d_1]LOC_OUTI Failure P10 1 Cutput Loc_out id
within the List of | |fsiure 1a_2[10c_atoCk1 punction fallure |fm_t0_2 Function _[0¢_bLockz 1d
Failures Failure_Id_3|LOC_BLOCK3 Component Failure |FM_ID_3 Component |LOC_BLOCK3_Id

Fig. 21. FMEA: Example of Output from SySTEMA

D. FTA Algorithm

The FTA is a “Top-Down Navigation” (in reverse direction) of the
OSDsin Non-Nominal behavior, starting from top event (see Fig. 22).

»® Top-Event

833& Intermediate Events

Lagic Gates — o Intermediate

Events
~ R A
o 0 000
Fig. 22. Top-Down Navigation

SySTEMA will generate an EXCEL file with a table as Fig. 23,
containing the list of al the logic conditions which are the basis to
build the FTA graphical tree.

AD - Event = 'Launch Baloon'; Value = TRUE'
Al-Event = 'LNCH_CMD'; Value = TRUE'
A2 - Event = 'LNCH_EN'; Value = TRUE'

AO = (A1AND A2)

A2 = (A3)

A1 = (A4 AND A5) OR (A5 AND A7)
A5 = (A8 AND A9) OR (A9 AND A11)
A9 = (A12) OR (A13)

A13 = (A14) OR (A15)

A3 - Event = 'LNCH_EN signal SHORTED to input'; BASIC EVENT
Ad - Event = 'LNCH_CMD_BUFF'; Value = TRUE'

AS - Event = 'LNCH_2BVPOW' ; Value = 'TRUE'

AT - Event = 'LNCH_CMD signal SHORTED to input'; BASIC EVENT
A - Event = '28VPOW_EN'; Value = 'FALSE'

A15 = (A16)
A9 - Event = '28VPOW' ; Value = TRUE'
A1l - Event = 'LNCH_28VPOW signal SHORTED to input'; BASIC EVENT A8 = (Aj'?}
A12 - Event = '28VPOW signal SHORTED to input’ ; BASICEVENT A4 = (A18) OR (A19)
A13 - Event = 'CTRL_ST' ; Value = TRUE' A18 = (A20)

A14 - Event = 'CTRL_ST signal stuck HIGH (OPEN]'; BASICEVENT

A15- Event = 'DRV_ST'; Value = 'FALSE'

A16- Event = 'DRV_ST signal stuck LOW (OPEN)' ; BASIC EVENT

A17 - Event = '2BVPOW_EN signal stuck LOW (GROUNDY'; BASIC EVENT
A18- Event = 'LNCH_CMD_EN'; Value = TRUE'

A19- Event = 'LNCH_CMD_BUFF signal stuck LOW (GROUND)'; BASIC EVENT
A20- Event = 'LNCH_CMD_EN signal stuck LOW (GROUND)'; BASIC EVENT

Fig. 23. FTA: Example of Output from SySTEMA

VI1I. CONCLUSIONS

The SySTEMA approach developed in this work was motivated
by the idea of an automated, integrated, operationa-oriented and
model based safety analysis of architectures modeled in SysML in a
single tool. In doing o, this SySTEMA approach aims to enhance the
classical safety analysis working on a unique model suitable for both
safety and design purpose.

The creation of such amodd will allow to:

« Think about safety since the starting phases of functiona

and architectural design;

* ldentify in atimely manner any critical issues related to the
impact of failures on the functionality of the system;

» Facilitate and make unique understanding of the logic of
the system;

* Perform main safety andlyses (FMEA, FTA) in an
automated way thus receiving a rapid feedback, resulting in
immediate impact on design choices.

From that it follows that an integration have to be applied between
the systems engineering domain and the safety domain. For this,
SysML was extended to include safety-related information. Since
these extensions are realized by stereotypes, applying it to existing
SysML system models requires almost no additional modeling effort.

At present, SyYSTEMA has been tested only on a limited type of
systems (i.e. limited types of nomina and faulty behaviors). A
reference library has been created starting from the analyzed systems,
with the purpose to support systems and safety engineers in the
description of system behavior through Sequence Diagrams.

Next steps will be to enrich the reference library with new systems
behaviors or failure modes which are not currently taken into account.

REFERENCES
[1] http://www.omg.org/spec/SysML/1.3/

[2] Bohm, Corrado; Giuseppe Jacopini (May 1966). "Flow Diagrams,
Turing Machines and Languages with Only Two Formation Rules'.
Communications of the ACM. 9 (5): 366-371.
doi:10.1145/355592.365646.

http://www.omg.org/spec/SysML/1.3/

