
Methodology for the Specification of Software
Requirements for an integrated Logistic Platform

Lucio Tirone, Gaetano D’Altrui
Aster S.p.A.

via Tiburtina 1166, 00156 Rome (Italy)
lucio.tirone@aster-te.it

gaetano.daltrui@aster-te.it

Abstract — This article describes a methodology for the
specification of the software requirements of an Open Logistic
Services Platform. A business processes analysis, through BPMN
models of information exchange between private and institutional
actors linked to different logistic cycles, has allowed to identify
and analyze Use Cases and to build, in SysML language, the
Sequence Diagrams that describe the interactions between users.
Through MBSE approach, functional requirements able to
ensure the processes proper implementation have been derived.
Through the UML language, the software architectural design
has been provided and, by defining components and artifacts, the
software requirements of each module composing the Platform
software have been specified.

Keywords — logistic platform, business process, software
component, BPMN, SysML, UML.

I. INTRODUCTION: THE LIMS PROJECT

The present article shows the application of the Systems
Engineering approach to the specification of the software
requirements of an integrated logistic platform for the
exchange of business information between the users inside the
port community, designed and developed within the LIMS
(Logistic Information Management Service) project, funded by
the Italian Ministry of Research and University. The main
objective of the LIMS project is the development and
demonstration of a regional-scale Open Services Platform,
which allows, on the basis of a unified model of the logistic
processes, the harmonized management, and efficient use of
commercial digitized information from the relevant authorities
and the public and private users operating in the integrated port
and interport logistics. In particular, the LIMS platform has
been developed considering the B2B (Business to Business)
component that defines the commercial transactions between
non-institutional users. To this aim, the information flows
requested by the various actors involved and the most suitable
interfaces to accomplish the exchange of information have
been both defined. The project fits into the broader picture of
the digitization process of the Public Administration and the
rationalization and standardization of transport management at
national level, in order to experience, at pilot level in the
Campania Region, the B2B service component of the future
National Single Window for maritime transport to be
implemented in the European Directive 2010/65 by 2015 at the

national and institutional levels. The LIMS platform will
represent a web application offering to Port Community users
the following key services:

• Logistic Data Validation Service: Ship Cycle Services
managed by the Port Informer; definition of a
harmonized model for the management of the operative
stages of ships in port, from the ship announcement to
the arrival in port, maneuvers needed for commercial
operations, and departure of the ship.

• Import Goods Management Service: Management of
Customs clearance at sea, sharing of goods customs
status as declared by competent authorities. Freight
Services: dedicated to the management of logistics
operations that relate to the transport services
scheduling and delivery of goods.

• Export Goods Management Service: Business
Services: dedicated to the management of processes
related to the booking of goods transport across the ship
and its payments; Customer/Hauler Order management;
Freight tracking through all transit logistic nodes;
Notification of arrival export cargo.

 The development of the platform into its Hardware /
Software components relies on the generation of a harmonized
model that allows the study of solutions related to all aspects of
information and documents exchange (information flows)
between the multitude of actors involved in the logistic process
which may be different for the various Italian Port and
Interport systems. In both cases, the platform is the only
interface with which users can turn to for accessing to data
associated to their own shipment. In the specific case of the
Campania Region (in the southern part of Italy), the logistics
supply chain primary centers are configured as intermodal
road-sea (port of Naples and Salerno) and road-rail (interport of
Nola and Marcianise). This model is able to represent the
different cycles of logistics processes, depending on the
exchange of messages among actors in the port / interport
community and based on the info-telematic systems they use.
Once completed, it provides all the elements to identify, define
and develop the B2B (Business to Business) Services offered
to the actors involved in the logistics chain.

Copyright © held by the authors.

mailto:lucio.tirone@aster-te.it
mailto:gaetano.daltrui@aster-te.it

 Throughout the LIMS project, the Consortium, through the
lead of ASTER, has followed the Systems Engineering
methodologies. Systems Engineering fosters the definition of
common terms, interfaces management and control of those
independent elements/systems, while providing controls to
ensure that the overall product satisfies the stakeholder needs.
It is often not straightforward to understand when a complex
system crosses the boundary to become a system of systems,
however it is often the case that the development of such an
entity is a collaborative challenge in which the several involved
teams are charged to develop elements that cooperate across
many iterative stages to provide the required capabilities.

II. OVERALL METHODOLOGY

The proposed approach, reported in Fig. 1, is a top-down
iterative process that follows the entire typical flow-down of
requirements, starting from the acquisition of the
user/stakeholder needs, which are elaborated for the definition
of the stakeholder requirements, then modeling the processes in
a standard format, and proceeding with the definition of the
system requirements. The interaction between layers is based
on a “customer-supplier” paradigm, according to which each
layer interacts with the next layers ‘providing’ a specification
of the requested behavior, in the same way as the final user
provides its needs to the system developer. The process will
end when the set of requirements is well-suited to be developed
by a single team. The final output of LIMS Project is a web-
based platform, an info-telematics system for logistic
information exchange used by different actors, interfaced with
external institutional systems. Hence, it is useful to model the
platform as a system, i.e. an artifact consisting of blocks that,
together, pursue a goal [3]. A block can be generally software,
hardware, an individual, or any other unit. But the LIMS
platform, in its final realization, is a software with a front-end,
for user access, and a back-end for the management and
implementation of logistic processes, data storage and
notification transmission among the involved operators. So, a
system model is useful to derive the system requirements,
whereas a model of the software, through UML concepts, is
needed to represent the different software blocks, their
interactions and the requirements allocation. In order to meet
the operational requirements described above, the platform
must be designed in such a way as to implement efficiently the
logistic cycles according to the typical business models of the
port and inter-port context. To this aim, the physical and
functional architecture, and the provided services of the
Platform, have been defined using a Service-Oriented
Architecture (SOA) approach, which can support the use of
web services to ensure interoperability between different
systems. The definition of a system using a SOA approach is
composed of the following phases:

• Implementation of a system Model on the basis of the
Model Based System Engineering (MBSE)
methodology, which allows to define the
functionalities and physical composition of a system.

• Services Definition with a Service-Oriented
methodology, that suggests to divide and classify a
complex problem into smaller and non-merged

problems, and conceives reusable, combinable and
available services in a standardized manner.

Fig. 1. LIMS Overall Approach

The first step in the realization of the platform model is the
analysis of the Business Model, in order to define the
information flows and the exchange of data and documents
between the various actors involved in the logistic cycles
related to ships and goods management. The definition of the
Business Model requires a focus on the system context (its
boundaries, external actors, external interfaces). The system
context diagram shows the system’s environment and thus the
system boundary. It is not a predefined diagram of SysML or
UML, but a variant of block diagram. In the center of the
diagram is the system under development. It is a block with the
stereotype system. This clearly distinguishes this block from
other system blocks yet to be identified. All currently known
interaction partners are denoted all around the system and
associations are used to connect them

The context of the LIMS platform is represented in Fig. 2.
The upper part of the figure indicates the Actors that interact
with the system, while the right section illustrates external
systems exchanging information with the LIMS Platform. An
actor is not a concrete system or a concrete individual, but a
role. The system Actors, within LIMS project, are listed below:

• Port Informer;

• Shipping Line (or the Ship Agents, which is the
Shipping Line representative);

• Freight Forwarder;

• Terminal Operator;

• Road Hauler;

• Consignee;

• Shipper;

• Port Authority.

Fig. 2. LIMS Platform Context

The list of External Systems, exchanging information with
LIMS Platform, is reported below:

• Port Management Information System (PMIS): it is a
system managed by the Italian General Command of
Harbour Masters. Informations exchange is related to
the Mooring Plan of the Ships;

• TC Platform: it represents the information exchange
platform between a terminal operator and the Customs
info-telematic system (AIDA-CARGO). LIMS
platform requests to TC the Import/Export Goods
Manifest, the goods items reference numbers (A3), and
the customs status of the goods to be unloaded in a
terminal. These information can be accessed with the
same temporal rate with which a terminal itself
receives them;

• Port Informer Sensors: sensors managed by the Port
Informer (AIS portal, meteo-stations, cameras, tide
gauges and other sensors network) for the validation of
logistic data provided by the Ship Master by means of
the radio communications with the Port Informer itself.

The language we choose to formally describe the business
process is the BPMN (Business Process Model and Notation), a
standard internationally defined by the OMG (Object
Management Group). It is able to provide a graphical
representation to specify individual processes through a
Business Process Diagram (BPD), with a standard, effective
and intuitive notation for all the stakeholders involved in the
processes. The BPMN diagrams are able to provide a common
“framework” upon which it is possible to describe interactions
among different operators working in a port or in an interport
[1]. The adoption of the BPMN language allows to offer a clear
vision of the processes among actors which have
heterogeneous characteristics and different responsibilities,
also contributing to the modeling of the interactions that take
place within the Port Regionalization, where the port cluster is
seen as a changing environment to which different logistic

realities are related. A very important feature of the BPMN
standard is that it often allows tight integration with software
development systems. In fact, applications that allow the
BPMN designer to represent the process details using BPMN
and then to translate that model into software programs for the
process management, are now available. Through dedicated
technical meetings with the different operators, the processes
that the platform has to implement to guarantee each of the key
services defined above, have been defined and validated. These
processes have been modeled through the BPMN language, by
means of Choreography and Orchestration diagrams. A
Choreography diagram, representing the macro-activities of the
process represented in a chronological sequence, has been
realized for each key service. Each macro-activity is
represented by a block showing, in the upper part, the initiating
partner, and the secondary actors in the lower part. A dedicated
Orchestration diagram has been provided to represent the
detailed information exchange between the actors of each
block. A section of the BPMN choreography diagram related to
the Export Goods Management Services (in particular, the
Booking Request task) is reported in Fig. 3 (it represents just
one choreography task to which the Orchestration Diagram
corresponds).

The orchestration diagram, showing the information flows
between the freight forwarder and the hauler for an optimized
and digitized (through the platform) management of transport
order, is depicted in Fig. 4. The BPMN diagrams show clearly
the user tasks, which require the interaction of the user with the
platform for the submission of data or the visualization of
forms and summary tables, and the send/receive tasks, which
indicate the functionality of data structures transmitting to the
actors who need the information, adding more data, if needed,
to complete the task, for planning purposes and hence speeding
up the whole process.

Fig. 3. Choreography Diagram: Export Goods Management Service

Fig. 4. Orchestration Diagram: Transport Order Management

III. DERIVATION OF PLATFORM REQUIREMENTS

 The following step is the identification of the system Use
Cases, representing the goals of a system from the perspective
of the users, from the analysis of the business processes. Using
the SysML language, formal Use Case diagrams are drawn, to
show the complete list of actors (primary and secondary), as
well as a full text description for each of them to illustrate the
goal of the primary actor and the role of the secondary actors.
So, the Diagram provides an high-level view of a system
functionality, depending on how the actors use the system
itself. A typical use case description may include the
Preconditions, i.e. the conditions that must hold for the use case
to begin, Postconditions, the conditions that must hold once the
use case has completed, and the Trigger, which identifies the
event that causes the activation of the use case. Fig. 5 shows
one example of Use Case Diagram of the case under study,
representing the functionality of transport order elaboration
related to the process analyzed in Fig. 4. At this point, the
analysis of the platform behavior, within each Use Case, can be
performed thorough dedicated sequence diagrams, used to
describe the main interactions between the system and its
environment.

The approach for the derivation of the requirements is
based on the detailed analysis of the sequence diagrams, as
follows:

• Looking at the Use Case description, draw messages
between actors and system. These messages represent
an exchange of information rather than data, because
the focus is on the functional behavior, independently
from the actual physical realization (i.e. different
message standards could be used, but the information
content of the message is what we are concerned about
in this phase).

• Draw a “message to self” before each output message
on the system lifeline. These messages correspond to
“operations” allocated to the system.

Fig. 5. Use Case Description: Transport Order Confirmation Request

Each operation derived in this way is a very reasonable
candidate for a functional requirement, because it has to
describe what the system has to do with the input information,

in order to produce the requested output, without any concern
on how the system elements interact with each other in the
process.

Fig. 6 shows one sequence diagram developed for the case
under study, and the requirements derived from it. The first one
is related to the request of a form for the declaration of goods
data associated to a transport order, while the other two are
associated to the request to the platform of saving and
submission of the data structure originated from the user form.

Fig. 6. Sequence Diagram related to Transport Order Management

 It may be the case that functional System Requirements
written in this way are too complex to be efficiently managed,
for example for testability reasons. If this happens, the
requirement can be decomposed in smaller and more
manageable units, but still maintaining the unity of the main
system level requirement.

IV. DEFINITION OF SOFTWARE ARCHITECURE

The goal of the last phase is to decompose the system into a
set of system elements, describe their interactions, and derive
from the system level functional Requirements an associated
list of requirements to be associated to each system element.
The phase is divided in two steps, the first with a purely
functional white-box analysis, and the second with the physical
analysis, based on the real components chosen as system
elements. The approach is recursive, in that each level of
system decomposition is requested to perform the same chain
of activities, until the lowest significant level for the
requirements is reached. Thus, for example, the developer of a
system element will receive the Requirements allocated to it,
and perform the entire analysis already developed, as if the
system level were its customer.

 As, for the case under study, the platform is itself a
software system, it has been defined through the UML
approach [4], [5], [6], [7], [8].

The UML is able to represent the static structure and the
dynamic behavior of a software system [2]. A software system
is modeled as a collection of discrete objects interacting to
perform functionalities that are ultimately exploited by an
external user. The UML also contains constructs for organizing
models in Packages that enable software teams to divide the
software system into smaller parts, identifying dependencies

between Packages, and to manage in this way the installation
of these software parts on complex execution environments.

 Visual Paradigm is the software tool used to describe the
LIMS Platform UML model.

 The main UML modeling element is the Component. A
component describes a modular piece of a logical or physical
system whose externally visible behavior can be described
much more concisely than its implementation. It is an abstract
element of design that hides its implementation behind a set of
interfaces. The Component interfaces describe the
functionalities that the component supports. Interfaces may be
provided or required. A provided interface describes the
operations that a Component guarantees to make available to
other components. The component may supply additional
operations, but it must at least supply all the operations in a
provided interface. A required interface describes the
functionality that it needs from other components. The
component may not always use all of the listed operations, but
it is guaranteed to work if the components that it uses at least
supply all the listed operations. Any component that satisfies
the set of interfaces can be substituted in a slot. A component is
realized by Classes, collected in an “Artifact”, which means a
file or a set of files, i.e. a physical unit of the construction of a
system.

 A Subsystem is used to model a wide part of a software
system, so Components on large-scale, and it is seen as a
<<stereotype>> of a component. A subsystem is therefore a
coherent part of the design. It’s possible to introduce the
concept of module, which is a storage and manipulation
software unit. Modules can be associated with a source code,
with a binary code and with executables. A stereotype
“module” referring to a Subsystem may be defined in Visual
Paradigm tool.

 The Platform, in general, can be defined as the stereotype
"Platform" applied to a Package, which is a part of the Model:
this, in fact, is a set of Packages which provides a complete
view of the system. The Platform is a set of all modules.

 A “Suite” is a collection of modules and represents the
Product as sold to a specific Customer. LIMS Platform
Modules are shown in Fig. 7. The Modules are classified
according to the color codes defined in TABLE I.

TABLE I. SOFTWARE MODULE CLASSIFCATION

Table Column Head
Module

Type
Description

Color
Code

Logistic
Modules

Modules devoted to the implementation of
logistic Processes defined in the Business
Model

Application
Modules

Modules responsible for the monitoring of
the process status and dataflow
management

SW Core
Modules

Modules related to the service software
infrastructure

GIS
Module

Module related to the cartographic
services

Fig. 7. Software Modules of LIMS Platform

 For each Module, a dedicated Component Diagram,
showing the UML components defined for it with the related
interfaces, has been realized. Fig. 8 shows the Component
Diagram for one of the Logistic Modules of the Platform.

Fig. 8. Component Diagram of a Module

Then, different Suites have been defined as originating from
LIMS platform, with the set of modules imported. For each
Suite, it has been realized, from one side, a Component
Diagram (see for example the diagram in Fig. 9) showing the
modules included and the functional relationships between
them and, from the other side, a Deployment Diagram (see for
example the diagram in Fig. 10) where it is possible to see the
physical nodes where the components may be deployed.

 After the software architecture modeling, and hence its
decomposition in components and related interfaces, the
platform software requirements have been derived. A particular
attention has been given to the non-functional requirements,
which specify requirements under which the system is required
to operate or exist or system properties. Quality requirements
and human factors are examples of this type. Speaking of
product requirements, a focus has been made on reliability
requirements, as the LIMS platform has to work in a safe and
reliable way. So, the actions of preventive and corrective
maintenance, fault types and associated timelines, and methods
for instant troubleshooting have been defined. At the same
time, the application servers configuration and redundant
power supply have been considered. As for privacy
requirements, which are of big importance in a platform for the
exchange of commercial information, the following
requirements related to software security have been defined:

• Confidentiality;

• Integrity;

• Availability;

• Authentication;

• Authorization;

• Logging;

• Platform Session Management;

• Management of errors and exceptions;

• Software configuration parameters Management.

 The identification of the platform Modules has been made
with this rationale: an ESB (Enterprise Service Bus) is a
software architecture with which each application
communicates, guarantying the manipulation of the messages
and their routing to the final destination. The Application Logic
is responsible for the monitoring of the processes status
(executed by the Logistic Modules), the presentation of the
correct GUI (Graphical User Interface) to the User on the basis
of the current status, the management of the data flow in input
(from GUI to the DB) and output (from DB or process to the
GUI), and the management of the user interactions with the
Browser Module. This approach facilitates the requirements
allocation and traceability, as the logics of the application is
separated from the user interface, and at the same time all the
logistic processes, which have to be correctly implemented, are
somehow defined with separated software modules.

CONCLUSION

This paper described a model based approach for the
derivation of the functional specification and software
requirements of an integrated logistic platform which allows an
efficient information flows exchange within a port community.

REFERENCES
[1] S. A. White, and D. Miers, “BPMN Modeling and Reference Guide”,

2008.

[2] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling
Language Reference Manual”, second edition, 2005.

[3] Technical Board International Council on Systems Engineering
(INCOSE). Sustems Engineering Handbook, Vrsion 2a, June 2004.

[4] UML for Systems Engineering: Request for Information.
http://www.omg.org/cgi-bin/doc?ad/02-01-17, 2002.

[5] UML for Systems Engineering: Request for Proposal.
http://www.omg.org/cgi-bin/doc?ad/03-03-41, 2003.

[6] UML 2.1.1 Superstructure Specification. http://www.omg.org/cgi-
bin/doc?formal/07-02-03, 2007.

[7] UML 2.0 Diagram Interchange. http://www.omg.org/cgi-
bin/doc?ptc/2003-09-01, 2003.

[8] UML 2.0 Infrastructure Specification. http://www.omg.org/cgi-
bin/doc?ptc/2003-09-15, 2003.

http://www.omg.org/cgi-bin/doc?ad/02-01-17
http://www.omg.org/cgi-bin/doc?ad/03-03-41
http://www.omg.org/cgi-bin/doc?formal/07-02-03
http://www.omg.org/cgi-bin/doc?formal/07-02-03
http://www.omg.org/cgi-bin/doc?ptc/2003-09-0
http://www.omg.org/cgi-bin/doc?ptc/2003-09-0
http://www.omg.org/cgi-bin/doc?ptc/2003-09-15
http://www.omg.org/cgi-bin/doc?ptc/2003-09-15

Fig. 9. Component Diagram of a Suite

Fig. 10. Deployment Diagram of a Suite

	I. Introduction: The Lims Project
	II. Overall Methodology
	III. Derivation of Platform Requirements
	IV. Definition of Software Architecure
	Conclusion
	References

