
CPU and GPU Parallel Kramers-Klein
Calculations

Bogdan I. Iaparov, Anton N. Karmatsky, and Alexander S. Moskvin

Ural Federal University, Yekaterinburg, Russia
bogdan.iaparov@urfu.ru

Abstract. The Kramers-Klein equation is a special Fokker-Planck equa-
tion describing the brownian motion in a potential. This equation is used
in different areas of biology, chemistry and physics. In this paper we
present the comparison between numerical and analytical solutions in
case of a linear force and usage of multi-core CPU and GPU for solv-
ing Kramers-Klein equation with different boundary conditions. It was
shown that the GPU calculations under reflecting boundary conditions
are slower as compared with other boundary conditions because in the
first case we need to call two kernels sequentially.

Keywords: Kramers-Klein equation · parallel algorithm · CUDA ·
OpenMP

1 Introduction

Brownian motion(BM) is the random motion of a particle in a fluid. Hereafter
we’re discussing the one-dimensional case. BM can be mathematically described
in two ways. The first one is a Langevin equation, a stochastic differential equa-
tion for the particle’s coordinate:

mẍ+mγẋ+mf ′(x) = mΓ (t)

< Γ (t) >= 0

< Γ (t)Γ (t′) >= 2γkBTδ(t
′ − t)

(1)

here m is the mass of the particle, γ is the damping constant, f ′(x) is the
stationary potential force per mass due to the potential −f(x), Γ (t) – delta-
correlated Gaussian random process. It’s clearly seen from (1) that x(t) and
v(t) = ẋ(t) are stochastic quantities due to Γ (t) in the equation. Therefore we
may ask for probability density function (PDF)(ρ(x, v, t)) of finding particle in
a coordinate x with a velocity v at time t. An equation for PDF in case of BM
in an external potential field is called Kramers-Klein (KK) equation:

∂ρ

∂t
= −v ∂ρ

∂x
+ f ′(x)

∂ρ

∂v
+ γ

∂vρ

∂v
+
γkBT

m

∂2ρ

∂v2
(2)

This equation was used first to describe reaction kinetics [1], but later it turned
out that it can be used in very different fields of physics such as relaxation of
dipoles, superionic conductors and so on [2]. In the paper we address parallel
numerical solutions of (2).



18 Bogdan I. Iaparov, Anton N. Karmatsky, and Alexander S. Moskvin

2 Numerical Solution

Despite intensive analytical studies of KK equation [2], analytic solution can
be found only in special cases. This makes numerical solutions as a significant
resource for studying stochastic processes. Difficulties of studying KK equation
numerically come from the fact, that this partial differential equation is of a
mixed type. The problem behaves like a parabolic equation in the v-direction
and like a hyperbolic equation in the x-direction. Moreover, we have different
types of hyperbolic equations in the x-directions for v > 0 and v < 0. We used a
numerical method, computational domain and the uniform grid as in [3].Central
differences scheme were used for the discretization in v - direction of first and
second derivatives, for x - direction the upwind scheme discretization was used,
for t - direction forward Euler scheme was used. It is an explicit method that
efficiently deals with different types of boundary conditions and potential fields.
Convergence and stability of the method is discussed in Ref.[3]. The accuracy of
the method is defined as O(∆x+∆v2 +∆t).

3 Boundary Conditions

Say we have a rectangular 2D computational domain(in x and v direction, xL ≤
x ≤ xR,vL ≤ v ≤ vR) with uniform grid. In the v-direction the problem doesn’t
have boundaries and we assume that computational domain is so large that we
can assume the BC as follows:

ρ(x, vL, t) = ρ(x, vR, t) = 0 (3)

for all x, t.
In the x-direction we consider three types of BC:

– Dirichlet. In analogy with v-direction we assume that computational domain
is so large that particle can’t be in boundaries of domain:

ρ(xL, v, t) = ρ(xR, v, t) = 0 (4)

for all v, t.
– Absorbing. In this case we only have physical boundaries defined at xL for
v < 0 and at xR for v > 0:

ρ(xL, v, t) = 0, v > 0

ρ(xR, v, t) = 0, v < 0
(5)

The physical meaning of the absorbing BC is that there is no particle flux
from the boundary into the interior.

– Reflecting. In this case we have the BC as follows:

ρ(xL, v, t) = ρ(xL,−v, t)
ρ(xR, v, t) = ρ(xR,−v, t)

(6)

The physical meaning of the reflecting BC is that no particle would be lost
at the boundary and all particles will be reflected back into the interior.



CPU and GPU Parallel Kramers-Klein Calculations 19

4 Parallelization

Parallel CPU calculations were implemented using OpenMP, the GPU calcula-
tions were done using CUDA. The numerical method we used [3] is explicit, the
PDF inside the domain is fully calculated from PDF at previous time, as a con-
sequence, calculation of PDF in each interior’s node is independent of another
nodes at the same time:

ρ(x, v, ti+1) = ρ(x, v, ρ(x, v, ti)) (7)

hence the method can be easily parallelized using “stencil” parallel pattern.
In case of CPU parallelization, the boundaries were calculated separately and

without parallelization because the highest performance was shown in this case.
In case of GPU parallelization the boundaries were calculated in one CUDA
kernel with interior in case of the Dirichlet and absorbing BC.

In case of the reflecting BC two CUDA kernels run sequentially: the first
one calclulates interior and half of boundaries in x-direction with v > 0 and the
second one calculates half of the boundaries in x-direction with v < 0. We did
it because in this case PDF on the boundary depends on PDF in another points
at the same time(see (6)). As a result, GPU calculations with reflecting BC are
slower than with the Dirichet or absorbing ones.

In CUDA calculations only global memory was used.

5 Results

Program for CPU was written in C++ and compiled with gcc (g++ -O3) com-
piler. GPU implementation is also in C++ and CUDA part was compiled with
proprietary nvcc compiler while g++ has been used for the host code. CPU cal-
culations were done on PC(4x Intel Core i5 3.2 GHz, NVIDIA GTX 750), GPU
calculations were done on PC and Uran supercomputer(NVIDIA Tesla M2050)
from Institute of Mathematics and Mechanics UrB RAS. Calculations were done
using double precision floating point numbers.

First, we compared results of the numerical solution with the analytic one
in case of a linear force (parabolic potential). The analytic solution in this case
was taken from [2] and is a two-variable Gaussian distribution of coordinate and
velocity with the time-dependent means and variances. The error was calculated
as a discrete norm:

ε(t) =

∆x∆v∑
i,j

(ρ(xi, vj , t) − ρa(xi, vj , t))
2

0.5

(8)

where ρa is an analytic solution. In Figure 1 the numerical and analytic PDFs
are shown at t = 12 (dimensionless units). Number of nodes in the x-direction
is 2049 and in the v-direction is 129. It is clearly seen that numerical solution
does approximate the analytic one quite accurately.



20 Bogdan I. Iaparov, Anton N. Karmatsky, and Alexander S. Moskvin

x

� 4
� 2

0
2

4

v

� 4

� 2

0

2

4

� 0.10

� 0.05

0.00

0.05

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(a) Numerical solution

x

� 4
� 2

0
2

4

v

� 4

� 2

0

2

4

� 0.05

0.00

0.05

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(b) Analytic solution

Fig. 1: PDF in case of potential 0.18x2, γ = 3. 1a is a numerical and 1b is an
analytic solution at t = 12. At t = 0, the particle has zero velocity and x = 0.
ε(12) = 8.3e− 4. All variables are in dimensionless units.

Then we looked on the performance of parallel CPU and GPU calculations
comparing with the serial CPU ones with different BC. Calculations were done
on an uniform grid with 2049 nodes in x-direction and with 257 nodes in v-
direction, total of 526593 nodes. Time step was 1.4e − 4 and calculations were
stopped when t = 10. The results are shown in the Table 1. Parallel solving of
KK equation provides a significant speed up of the calculations even in case of
the parallel CPU solution.

Table 1: Duration of solving KK equation on a 2049x257 grid with ∆t = 1.4e−4
to t = 10. In brackets is written the speed up factor comparing with serial CPU
calculations(1x CPU).

Hardware
Type of BC

Dirichlet Absorbing Reflecting

1x CPU 592.6 s 601.2 s 600.8 s

4x CPU 218.3 s (2.7x) 226.74 s (2.7x) 220 s (2.7x)

1x GPU(GTX 750) 114.7 s (5.2x) 116.6 s (5.2x) 122 s (4.9x)

1x GPU(Tesla M2050) 39.8 s (14.9x) 40 s (15x) 43.9 s (13.7x)

Calculations on grids with different Np and Nx have shown that duration of
solving KK equation depends linearly on N = Np ·Nx(data not shown).

6 Discussion

KK equation is a partial differential equation of mixed type which describes
the time evolution of a PDF of a brownian particle in an external potential. In



CPU and GPU Parallel Kramers-Klein Calculations 21

literature the Kramers problem(find the escape rate of a Brownian particle from
a potential well) is usually solved analytically using some assumptions(harmonic
approximation near minima [1]), piecewise-linear approximation [4] and high
energy barriers approximation[5].

Finding PDF is a much harder task and can be solved analytically only
in a few cases. In this paper we solved the KK equation numerically. Solving
KK equation numerically allows us to get a solution for both finite and infinite
geometry and arbitrary potential field. We showed that both CPU and GPU
parallel computing provide a significant gain in the solving time. Even home
PC’s GPU can solve the equation for an acceptable time.

BC type is important from a physical viewpoint on the problem when it has
a finite geometry. Different types of collisions of brownian particle with a wall:
the elastic(reflecting BC) and inelactic (absorbing BC) ones influence the PDF
very significantly[3].

From a viewpoint of computations, in case of the reflecting BC, the GPU
parallelization is less effective because in one iteration we need to call two kernels
sequentially and Table 1 shows quite clearly, that the GPU acceleration is smaller
in case of the reflecting BC.

From a viewpoint of computations, further works should include more accu-
rate and efficient schemes for solving the KK equation and its parallelization[7].
Further physical researches should include numerical studies of the KK equation
for the ion channel kinetics[6] with different physically reasonable potentials,
infinite and finite geometries.

Acknowledgements. Supported by the Russian Scientific Foundation,
project # 14-35-00005.

References

1. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of
chemical reactions, Physica. 7: 284-304 (1940)

2. Risken, H.: The Fokker-Planck Equation, Springer, Berlin (1989)
3. Araújo, A., Das, A.K., Sousa, E.: A numerical approach to study the Kramers

equation for finite geometries: boundary conditions and potential fields, J. Phys. A:
Math. Theor. 48:045202 (2015)

4. Goychuk, I., Hänggi, P.: The role of conformational diffusion in ion channel gating,
Physica A. 325:9–18 (2003)

5. Mel’nikov, V.I., Meshkov, S.V.: Theory of activated rate processes: Exact solution
of the Kramers problem, J. Chem. Phys. 85:1018–1027 (1986)

6. Sigg, D.: Modeling ion channels: Past, present, and future, J Gen Physiol., 144: 726
(2014)

7. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws, Advanced Numerical Approximation of
Nonlinear Hyperbolic Equations,Lecture Notes in Mathematics series, 1697: 325432
(2006)


