Automatic Launch and Tracking
the Computational Simulations
with LiFlow and Sumatra

Evgeniy Kuklin!'?® and Konstantin Ushenin?:3

! Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russia
2 Institute of Immunology and Physiology of the Ural Branch of the
Russian Academy of Sciences, Yekaterinburg, Russia
3 Ural Federal University, Yekaterinburg, Russia
key@imm.uran.ru

Abstract. Reproducibility is an essential feature in the simulation of
living systems. In this paper we describe the design of an automation
recording system for computational simulations, which is capable of cap-
turing both the metadata and the experimental results, and store them
in an archive in a convenient form for post-processing. The complex
capture process is hidden from users. The gathered environment of com-
putational experiments allows to index and search the data about the
experiments that have already been carried out. The system has been
used for performing the simulation of the human heart left ventricle.

Keywords: parallel computing systems - living system simulation - data
storage - computational experiment reproducibility

1 Introduction

High-performance computing simulations and large scientific experiments gen-
erate hundreds of gigabytes of data, with these data sizes growing every year.
Very often, for recording the results even a standard supercomputer storage is
not enough, to say nothing about the personal computer of scientists. However,
keeping the results of computational experiments is essential for further reusing
and postprocessing.

Another important problem that researchers in computing simulations often
face is non-reproducibility of computational experiments. This problem is even
more relevant in simulation of living systems and directly related to the large
number of computational experiments that scientists have to carry out in order
to obtain meaningful results. Many factors can affect computational results, such
as a change in the version of the compiler or the required library on a supercom-
puter. Automated recording of experimental details and storage of simulation
results will help to ensure reproducibility of the computational experiments.

Although the simulation of living systems often relies on computing clusters
and supercomputers, the use of parallel computing systems requires a high de-
gree of qualification in computer science, which many researchers involved in

50 Evgeniy Kuklin and Konstantin Ushenin

living system modeling do not possess. Moreover, the data preparation for com-
putational experiments is routine and time-consuming. We developed LiFlow [1],
a lightweight workflow automation system that provides scientists a convenient
graphical user interface to prepare and execute a series of computational exper-
iments on a parallel computing system with a single click.

In this paper we propose our approach to extend the system with the pro-
cess of automation of recording and storing metadata and experimental results.
Details, parameters, and software environment of every experiment are auto-
matically stored in the repository. The simulation results, obtained from exper-
iments, are automatically copied to the archive on the dedicated storage server.
These features can be achieved using Sumatra [2], an open source tool to support
reproducible computational research.

The offered system is used to simulate the human heart left ventricle. How-
ever, it could also be used in other areas that require conducting computational
experiments on parallel computing systems and storing their results.

2 Related Work

An urgent task is the development of the software tools for improving the re-
producibility of computational experiments. Such tools provide the ability to
automatically capture and store for future use all the environment of a compu-
tational experiment, such as the simulation software, the input and output data,
the hardware and software configuration of the computing system, etc.

One approach is based on executing experiments in a virtual environment,
such as virtual machines or cloud [3]. After an experiment completes, the snap-
shot of the virtual machine is saved together with the simulation software, the
output data, the experimental log, and so on. Unfortunately, this approach is
not suitable for parallel computing systems because virtualization considerably
reduces the performance of such systems. In addition, such approach will require
capturing the snapshots of all nodes in the cluster that were used for running
the experiment, which is not feasible.

An alternative approach is based on capturing the snapshot not of the en-
tire virtual machine but of the simulation software executable and the output
data. This approach is used in the CDE system (Code, Data, and Environment
packaging) [4]. However, a package prepared by the CDE system depends on the
software configuration of the computational system. Although the configuration
of a personal computer or a virtual machine is relatively easy to replicate, it
can be very difficult to adjust the configuration of a parallel computing system.
Most of such systems are shared among a great number of users; only qualified
administrators can install or configure the software. Hence, such approach is not
suitable for parallel computing systems.

Should also be mentioned electronic notebooks, such as Hivebench [5]. They
are well suited for accurate recording of all stages of the traditional experiments
in life science, and can store some result as an image or a table. However, the
amount of stored results is limited and not comparable with the volume of the

Automatic Launch and Tracking the Computational Simulations 51

results of calculations on a supercomputer. Besides, Hivebench does not have
an API, which makes challenging automatic access via scripts and negates the
convenience of the computational experiment.

Thus, for our purposes the most suitable are special tools to support the re-
producibility of computational experiments, which have direct access to a stor-
age. Some of them are aimed at a particular domain, for example Madagascar [6]
is used to analyze seismic data and supports multidimensional data analysis; and
Sumatra is used for numerical computations. Since our work is related to mod-
eling in the field of life science, to ensure the reproducibility of computational
experiments we aimed at integrating LiFlow with Sumatra.

Sumatra aims to capture the information required to recreate the compu-
tational experiment environment instead of capturing the experimental context
itself. It uses the source code of the program instead of the binaries and the gen-
eral operating system configuration. Furthermore, Sumatra provides the ability
to store the output data for future use in an archive. In addition, it allows to
index and search the data about experiments carried out, including additional
information provided by scientists. For example, if the experimental data was
published, scientists can add tags with the name of the paper (and, perhaps, ad-
ditional information, such as the figure or table with the data) to the experiment
record in the catalog. This allows researchers to quickly find the information re-
quired to reproduce the experiment they are interested in among a large number
of experiment records. Unfortunately, Sumatra lacks a convenient desktop user
interface. Although Sumatra is a standalone project, it can be used as a library
for third-party development and has its own API. LiFlow uses Sumatra for cap-
turing and storing all information from previously conducted experiments.

3 System Architecture

The LiFlow system is designed for the simplified workflow shown in Fig. 1. Dur-
ing the first stage, researchers prepare the description of the experiment series,
which is a set of experiments with the same model and varying parameters. The
preparation includes selection of simulation software that will implement the re-
quired model, generation of the configuration files with the required parameters,
and creation of the input data files for each experiment. Next, the process of
capturing the experimental metadata is performed. Finally, the experiments are
launched on a parallel computing system. At the end of computation the simu-
lation results are copied to the archive. Thereby, a user is only required to create
a description of the experiment series, everything else is done automatically.

The LiFlow system (Fig. 2) consists of the four main components. The Com-
putational Package Preparation Tool and the Experiment Execution GUI are
installed on the researcher’s personal computer, while the Experiment Execu-
tion Engine integrated with the Sumatra Module and the Experiment Catalog
with the Archive are deployed to the parallel computing system.

A user creates a computational package with the help of the Computational
Package Preparation Tool and uses the Experiment Execution GUI to transmit

52 Evgeniy Kuklin and Konstantin Ushenin

Preparing the . Conducting . Processing the
Capturing . Saving
data for . experiments . results of the
. —» experimental — —»{ the resultsin — .
a series of ona) series of
) metadata the archive .
experiment supercomputer experiments

Fig. 1. LiFlow system workflow

the package to the parallel computing system and run the experiment series.
Experiment Execution Engine on the computational cluster receives the package,
compiles the source code of the simulation software, and executes the generator of
the experiment series to produce a set of input data files for simulation software
with various parameter values. Next, the set of computational jobs is generated
with the same simulation software but different input files. Using the Sumatra
and Git commands the metadata capturing project is set up. The jobs are queued
on the computational cluster using the Sumatra parallel launch options, which
interacts with the resource manager of the cluster.

At the begin of the computation, Sumatra captures the environment of the
computational experiment and stores it in the Experiment Catalog (database).
Once the job is completed, the results of the experiment are automatically
recorded by Sumatra to the Experiment Archive on the storage system. After
all the jobs in the experiment series are completed, the Experiment Execution
Engine sends an email with the report to the user.

The experiment catalog, provided by Sumatra, is used to share the initial data
and the simulation results among the researchers. While preparing the series of
experiments, users can browse through the results of the experiments that had
been previously executed by their colleagues.

.. e rrrsrsr e rrr s rr .,

LiFlow system Sumatra module

Computational Package Experiment Catalog

Preparation Tool : and Archive

Experiment Execution : Experiment Execution

GUI Pl Engine :

A I :

----------------------------------- asssssssssssssssnnnnshosnnnnnnnnnnnnnnnnns’
Source Code Parallel Computing

Repository System

Fig. 2. LiFlow system architecture

Automatic Launch and Tracking the Computational Simulations 53

4 Implementation Detalils

The computational package in the current implementation is represented by a file
system directory containing the subdirectories with the following components:
the source code of the simulation software, the generator of the experiment series,
the initial data for the generator, and the script for executing.

The prepared computational package is transferred to the user’s directory in
the parallel computing system through the SSH protocol using the Paramiko [7]
library. Next, the source code of the simulation software is built on the compu-
tational cluster. If the build process fails, LiFlow warns the user and sends back
to him the build log file. In the case of a successful compilation, the system runs
the generator of the experiment series to produce the input data. After that,
LiFlow calls the Sumatra Module script that makes the rest of the work.

First of all, the metadata capturing environment is set up. By default, Suma-
tra store a project information in the project local directory. In order to create
the single database of all experiments of all users, we use the available --store
record option to set the shared database file. The source code, the input files,
and the launch options along with the user’s description of the experiment are
carefully saved and started to be publicly available. Next, the jobs are queued
to performed on the supercomputer.

Sumatra can interact with the SLURM Workload Manager [8], which handles
the supercomputer. So we abandon our previous implementation of setting tasks
on computation and gave the control to Sumatra. Parallel computations can be
performed using --launch mode=slurm-mpi project option. The generated tasks
for the series of experiments are placed in the SLURM job queue. After the job
is complete, the data have to be transferred to a long-term storage.

Sumatra has an embedded option for compression and placing obtained data
to the archive. With the --archive option we can set the shared folder to create
the single archive for all system users. Though the original data by default is
removed from the user’s home directory, it is possible to disable this feature and
make copies only, leaving users to do with their data whatever they want.

The shared database and archive are located at the dedicated storage server
with the total capacity about 40 Tb, built on RAID arrays. This amount will
be enough for several years of experimentation. As the server is located in the
same network as the supercomputer, connection to it is made by the simple
and reliable protocol NFSv4 and appeares as a local directory. If it is necessary
to combine heterogeneous resources in different networks, the —-store option
supports public links as well. In this case transferring data to the archive has to
be taken care of separately, using a mirroring data store by —-mirror option.

Since the simulation tasks can be calculated for hours, for the convenience
of users a e-mail notification system about the completion of tasks has been
made. Although SLURM itself allows sending notifications about the status of
the task, the project uses our own implementation of the notification based on
cron and sendmail. It was done because, firstly, SLURM notifications are not
very informative and can confuse users, and secondly, in the case of a series of
several dozen experiments they will only lead to cluttering the mailbox.

54 Evgeniy Kuklin and Konstantin Ushenin

The scripts in the LiFlow system are written in Python and Bash. The stor-
age of the simulation software source codes is implemented as a Git repository
provided by a third-party service.

Users are provided with a simple graphical interface, which allows one to
execute a series of experiments on a parallel computing system in one click.
The user needs to specify the credentials (login and password), the path to the
folder with the computational package, and the email address (for job completion
notification). The text output shows the current stage of the process of setting
up the experiment and, if an error occurs, specifies where did it happen. The
LiFlow GUI is also written in Python using the PyQt4 library and is designed
to work both on Windows and Linux.

The disadvantage of the current LiFlow implementation is the lack of the
failover mechanism. If an error occurs, the experiment will not be repeated.
This approach is chosen because the failure can be caused not only by prob-
lems with hardware or system software, but also, more frequently, by an error in
the simulation software or a wrong combination of parameters. In such a case,
restarting the experiment will not lead to solving the problem, it will only un-
necessarily load the computational cluster. Still, a failure in carrying out one
experiment does not lead to termination of the entire experiment series.

5 Discussion

The users of the LiFlow system, researchers in mathematical biology and bio-
physics from the Institute of Immunology and Physiology UrB RAS, provided a
generally positive feedback. The users appreciated the convenience of the LiFlow
GUI and the ability to obtain the results of simulation from the storage system.
Overall, LiFlow helped the researchers from the Institute of Immunology and
Physiology UrB RAS to conduct computational experiments more efficiently.

During the evaluation of the LiFLow system in the Krasovskii Institute of
Mathematics and Mechanics and the Ural Federal University, we were unable
to build the catalog and archive of experiments to be shared among different
organizations. This problem was caused not by technical difficulties but by or-
ganizational boundaries and security considerations. However, it can be solved
with the Sumatra options mentioned earlier.

Used in tandem, LiFlow and Sumatra provide the ability to combine the
advantages of both systems in one solution. Sumatra is a powerful tool to sup-
port reproducible computational experiments. With its help, we can achieve the
automatic capture of metadata from all running through the LiFlow system ex-
periments, track the data received from them and automatically record the data
to the archive. The useful feature is the ability of Sumatra to work with the
SLURM workload manager, which simplifies job handling. At the same time the
tracking tool keeps a log of all running experiments, in which any user of the
system can find any experiment of his colleagues, using a date or tags. While
LiFlow allows one to execute a series of computational experiments on paral-
lel computing systems using a convenient GUI, Sumatra automatically captures

Automatic Launch and Tracking the Computational Simulations 55

and stores the experimental environment in order to improve the experiments’
reproducibility.

6 Conclusion and Future Work

The paper describes the integration LiFlow, the computational workflow system

intended to automate the processing of a large number of experiments on parallel

clusters, with Sumatra, which is a tool to support reproducible computational

research. The system has been used for the simulation of the human heart left

ventricle. The use of LiFlow can significantly reduce the preparation time of a

series of experiments, as well as make processing of their results more convenient.
In the future, the system can be expanded in the following areas:

— Developing the mechanisms of secure integration of several computational
clusters from different organizations with a single LiFlow instance in order
to share computational resources and simulation results.

— Providing the ability to use cloud data storage for Experiment Archive.

— Creating more advanced and flexible generators of experiment series inte-
grated with GUIL

Acknowledgments. The work is supported by the RAS Presidium grant 1.33P
“Fundamental problems of mathematical modeling”, project no. 0401-2015-0025,
and by the Research Program of Ural Branch of RAS, project no. 15-7-1-26. Our
study was performed using the Uran supercomputer of the Krasovskii Institute
of Mathematics and Mechanics and the cluster of the Ural Federal University.

References

1. Ushenin, K.S., Kuklin, E.Y., Byordov, D.A., Sozykin, A.V.: Computational workflow
system for simulation of living systems on supercomputers. In: 10th Intern. Scientific
Conf. on Parallel Computing Technologies, PCT 2016; Arkhangelsk; Russia; 29-31
March 2016. CEUR Workshop Proceedings. Vol. 1576. (2016) 729-735

2. Davison, A.P., Mattioni, M., Samarkanov, D., Telericzuk, B.: Sumatra: a toolkit for
reproducible research. In: Implementing Reproducible Research. CRC Press (2014)
57-78

3. Howe, B.: Virtual Appliances, Cloud Computing, and Reproducible Research. In:
Computing in Science & Engineering. Vol. 14, no. 4. (2012) 36-41

4. Guo, P.: CDE: A Tool for Creating Portable Experimental Software Packages. In:
Computing in Science & Engineering. Vol. 14, no. 4. (2012) 32-35

5. Hivebench Electronic Lab notebook, https://www.hivebench.com/

6. Fomel, S., Sava, P., Vlad, 1., Liu, Y., Bashkardin, V.: Madagascar: Open-source Soft-
ware Project for Multidimensional Data Analysis and Reproducible Computational
Experiments. In: Journal of Open Research Software. (2013) DOI: 10.5334/jors.ag

7. Paramiko: a Python implementation of SSHv2, http://www.paramiko.org/

8. Jette, M.A., Yoo, A.B., Grondona, M.: SLURM: Simple Linux Utility for Resource
Management. In: Lecture Notes in Computer Science: Proceedings of Job Scheduling
Strategies for Parallel Processing (JSSPP). Vol. 2862. (2003) 44-60

