
 1

Adaptation of User Interface
Based on Contextual Feedback

Robertas Damaševičius, Paulius Paškevičius
Department of Software Engineering

Kaunas University of Technology
Kaunas, Lithuania

robertas.damasevicius@ktu.lt

Abstract—The spread of social networks and other online
collaboration-related practices changes the target of software
products from a single user to virtual communities. Such
communities view user interfaces of social websites as
communication partners (facilitators) rather than mere
communication medium. Effective communication requires
proper feedback from community-driven systems that create the
illusion of active participation and control. Furthermore,
feedback combined with community effort and evaluation
mechanisms such as crowdvoting can be used as a vehicle for
adaptation of interfaces to the requests of community. The
implementation of community-driven interfaces requires the
extension of existing user interface development architectures
and design patterns. In this paper we analyse known user
interaction and user interface models and present the contextual
feedback based adaptation (CFBA) meta-model, the four-tiered
user interface (4TUI) architecture, and the Model-Control-View-
Adapter (MCVA) pattern. A case study in the community-driven
interface adaptation is presented.

Keywords—user interface design, feedback modelling,
adaptable interface, interface evolution, crowdvoting.

 INTRODUCTION1
The spectacular rise of social networks and other

collaboration-based practices such as crowdsourcing [1]
underlined the importance of effective communication in
virtual communities. The term “virtual community” refers to a
large group of individuals that regularly share and exchange
information through computer-mediated mechanisms such as e-
mail, weblogs, or forums [2]. Many research studies
investigated what motivates people to participate in virtual
communities (e.g. see [3]). Out of many contributing factors,
the most important ones are common interests (e.g.,
professional networks such as LinkedIn), status seeking and
reputation (e.g., question-and-answer websites such as
StackOverflow), and affiliation (e.g., friend networks such as
Facebook). All these factors depend upon supporting effective
communication between a member of the virtual community
and the community represented by its other members and the
user interface of the social platform. In virtual communities
this communication is mostly computer-mediated, i.e., the user
interface of the platform that supports virtual community acts
as the „face” of the community or as a partner of conversation.

1 Copyright © 2016 held by the authors

The users are no longer the consumers of media content, but
also want to act as producers of content or even co-designers of
content delivery platforms [4] to have impact on the face of the
virtual community.

The strength of relationships that bind a member to a
community can be influenced by the impact a member can
make as well as a feedback that a member can receive from a
community. The success of a virtual community relies on the
voluntary contribution of valuable intellectual property of
individuals to a community without explicit compensation [5].
Even if an individual does not receive any explicit reward for
his/her contribution, he/she often wants his/her contribution to
make impact or at least be seen. Capturing and understanding
feedback received from users also is critical in business
information systems and customer relationship management [6]
as well as in intelligent systems and intelligent user interfaces
[7]. This practice has been recognized for long now and
content sharing sites such as Flickr or Youtube have been
successful very much due to this practice. However, the need to
say or show something to a community is paired with a need to
obtain answers or feedback from it.

In this paper we analyse feedback models and methods that
are aimed to increase the role of feedback in community
building and support efforts. To introduce the contextual
conditions into user interface evolution process, the contextual
model is required that maps contextual requirements from a
community of users received through feedback mechanisms to
the adaptations of user interfaces. Building user interfaces that
dynamically adapt to the context is not new [8-12]. Similar
approaches include mediation strategies for integrating the
input of multiple crowd workers in real-time [13], the
extension of the model-view user interface architecture with an
intelligent layer that handles interface events as commands and
allows a user to evolve an interface in a way that is entirely
independent of applications [14], and the website plug-in that
makes use of crowdsourcing to collect context-aware activity
data based on which suitable user interface adaptations for
different target devices are inferred [15].

Our novelty is the interpretation of the feedback from the
community of users of a system as the context of the system’s
user interface. This interpretation does not contradict the
definition of context provided in [16]: “context is any
information that can be used to characterize the situation of an
entity“. Feedback conveys context information (e.g., the

 2

interests, preferences, opinion of user) that has influence over
the presentation and functionality of user interface.

We propose the crowdvoting-based contextual feedback
meta-model, the four-tier community driven architecture and
the extension of the MVC pattern for implementing the
community-driven adaptation of user interfaces at the use stage
rather than at the design stage (as, e.g., in [17]). We describe its
application in the community-driven website user interface
project aimed to engage community members in the controlled
evolution of website interface.

I. ROLE OF FEEDBACK IN USER COMPUTER INTERACTION
The term ‘feedback’ originates from the area of cybernetics

and refers to the information that a system receives from its
environment about the effects or consequences of its actions
[18]. In communication, feedback is used for a broad range of
responses at various levels of communication. Commonly,
feedback is understood as any information about reaction to a
product or a person that can be used as a basis for improvement
[19]. Allwood et al. [20] claim that feedback is a central
functional subsystem of human communication. It consists of
methods that allow providing, without interrupting the dialog,
information about quality of communication such as ability and
willingness to have contact, ability to understand
communicated information as well as the emotions and
attitudes triggered by the information in the recipient.
According to Kotzé [21], feedback has three main elements: 1)
response, which serves to confirm that the recipient has
received information, 2) modification of behaviour, which
reassures the user that his input is relevant and has power to
change, and 3) intelligence (see, e.g., social creativity [22],
collective intelligence [23] and “wisdom of crowds” [24]) that
the opinion or understanding of the community can lead to
improved quality of communication and usability of a product.

The main aim of feedback is to induce the change of a
software product while the direction of the change itself
depends upon the polarity of feedback: positive feedback
(agreement) reinforces the change in the same direction;
negative feedback (disagreement) causes a change in the
opposite direction, while homeostatic feedback maintains
equilibrium [25]. In the long term, such change leads to the
evolution of a product or its interface and user feedback acts a
main driver of such evolution. Software evolution has been
recognized as a key issue in software development and use a
long time ago: as software application is released for use, the
world in which it is situated changes, and therefore new
demands constantly arise [26]. Traditionally, software
evolution has been dealt with offline using the version-based
approach as follows: a version is released, user response is
collected, a new (updated, corrected) version is released, and
the cycle is repeated again. However, in a modern world of
software development, software evolution has an
unprecedented speed [27], and feedback can be seen as a
means to accommodate and drive the change at the use time.

The understanding of increased importance of feedback
mechanisms signifies a shift from consumer cultures
(specialized in producing finished artefacts to be consumed
passively) to the participation-based cultures in which all

people can participate and contribute their solutions [32]. This
shift represents a transition from a world in which a small
number of experts define rules, create static products, and make
decisions for many consumers toward a world in which
everyone has interests and opportunities to actively participate
in the development of dynamically evolving products [33].

The essential role of feedback in natural communication
makes it a crucial issue in the development of human-computer
user interfaces [34] where users communicate proactively
rather than passively or reactively. An example of the proactive
role of the user is so called Split Interfaces, where frequently
used functionality is automatically copied to a specially
designated adaptive part of the interface [35, 36]. Altered
Prominence is another approach to interface adaptation that
highlights recently used elements of an interface [37]. Without
feedback, a human-computer dialog quickly breaks down while
proper feedback can create the illusion of a dialog partner
listening [38].

According to [19, 28, 29], in order to be effective, feedback
must be 1) persuasive (i.e. influencing future state of
community and behaviour of community members), 2)
contextual (i.e. include context information by default), and 3)
informative (i.e. convey useful information), 4) contributive
(i.e. contribute towards benefit of a community as a whole), 5)
continual (i.e. to support conversation as narrative of
community), 6) expressive (i.e. demonstrate polarity using
affective means such as emotions), and 7) effortless (easy to
use). In any case, feedback comes as a response to a previous
communicative act [30], i.e., in reaction to the status or
opinions of a community members or an entire community in
order to achieve consensus or alignment [31].

Techniques for collecting user feedback in software
systems cover a wide spectrum, ranging from error reporting
facilities to the content-related feedback mechanisms of social
networks [28]. Examples of such feedback mechanisms are the
Facebook “Like” button or the YouTube’s thumbs-up/thumbs-
down, which allow evaluating content, linking members while
require only a minimum amount of effort on the users’ side.
However, the amount of “likes” and “don’t likes” do not have a
direct influence how information is presented, i.e., the platform
of a virtual community has full control over the presentation
while the function of the user is reduced to evaluating other
users’ content rather than making influence over its
presentation. However, if properly implemented feedback
could increase affiliation, loyalty and immersion of the
community members beyond simple collection of “likes”.
Examples of such “socially advanced” user interfaces are a
crowdsourcing interface that collects user-generated mappings
between pairs of web pages [39], an adaptive user interface that
is constructed using consensus methods [40], and socially-
adaptable interfaces, interfaces that crowdsource the creation of
task-specific interface customizations and instantly share them
with all users of the application [41]. The development of such
socially advanced interfaces requires adequate models of
interaction, which we discuss in Section 3.

 3

II. MODELING INTERACTION AND INTERFACE ADAPTATION
Computers and internet are the media of social interaction

in virtual communities. Therefore, the social interaction in
virtual communities is mainly guided by the principles of
human-computer interaction. When humans interact with
computer, they first formulate their goals and then develop a
series of steps required to achieve that goal. Such mental model
of action is known as Norman’s Interaction Cycle (see Fig. 1)
[42], which has been used to evaluate the efficiency of a user
interface. The model includes both cognitive and physical
activities, and includes feedback, which is called “Evaluation”
in the model. The Norman’s model does not distinguish
between the content of the message delivered, its presentation
form and its affect (i.e., emotions associated with the message).
Therefore, it should be considered only as the simplest
approximation of human-computer interaction. Furthermore,
the interface in the Norman’s model can be interpreted as a
metaphor of dialogue between interface designer and its users.

Fig. 1. Interpretation of the Norman’s Interaction Cycle [42] as a dialogue
between designer and user

The extension of the Norman’s mental model is the Isatine
model [43] that is also based the Dieterich’s taxonomy of user
interface adaptation [44]. The model states that three entities
are involved in the adaptation of user interface: the user, the
interactive system, or any third party. The adaptation is
performed as follows: 1. Goals for user interface adaptation are
formulated; 2. The user or third party initiates request for
adaptation; 3. The adaptation is specified as a sequence of
commands issued to the interactive system for execution; 4.
The adaptation is applied using the adaptation support
mechanisms (e.g., through user interface options,
personalization); 5. Transition between the interface before and
after adaptation is performed; 6. Information about adaptation
is issued to the interested parties; and 7. Adaptation is
evaluated. The advantage of the Isatine model is a detailed
guideline for performing adaptation of user interfaces.

The Taylor’s Layered Protocols (LP) model and its
elaboration in [45, 46] are based upon the cognitive principle
that humans use superimposed layers of abstraction in
perception. From this principle the LP model arrives at the
architecture for structuring user-system interaction. The model
distinguishes between the system’s interpretation of their
messages (I-feedback), and information the system expects to
receive from the user (E-feedback). The advantage of the
model is the classification of feedback types (user’s feedback
and system’s feedback).

Fig. 2. Seeheim model emphasizing the three different levels of visual
feedback

The Seeheim model (see Fig. 2) [47] reveals the linguistic
nature of the visual feedback identifying three main software
modules (or layers): 1) Dialogue Control module handles the
syntactic aspects of the interaction and is responsible for the
dynamic behaviour of the system; 2) Application Interface
module provides a semantic interpretation of the information
received for the dialogue component; 3) Presentation Module
handles the lexical aspects of the interaction such in input as
well in output and is only aware of the presentation technology.
Visual feedback can be formulated at three different levels:
lexical (Presentation), syntactical (Dialogue Control) and
semantic (Application Interface Model).

The Bezold’s model [48] (see Fig. 3) deals with interface
adaptation, i.e., the ability of the interface to improve itself for
an individual user based on an observation of the user's
behaviour. Adaptation to user behaviour comprises two steps:
1) reasoning on the user-system interaction, and 2) adapting the
user interface accordingly. The user-system interaction is
considered as a linear sequence of basic events, which are
emitted by the interactive system. User modelling algorithms
extract new knowledge from the user-system interaction and
trigger interface adaptations. A semantic layer is introduced as
an abstraction of the interactive system that allows
implementing reasoning on the user-system interaction. The
system-independent logic is defined on the top of the semantic
layer. The adaptation layer decides which adaptations can be
applied to an interactive system. The advantage of the model is
a multi-layered architecture that allows separation of semantic,
interaction and adaptation aspects of user interface.

Fig. 3. Bezold’s model of interative system adaptation [48]

The Baxley's model of user interface [49] applies the
separation of concerns and decomposes user interface into
three tiers as follows: Structure (conceptual model, task flow,
and organizational model), Behaviour (viewing and navigation,
editing and manipulation, user assistance) and Presentation
(layout, graphic design style, text). Here, the conceptual model
supplies the ‘metaphor’ that helps users to interact with an
application, and the organizational model provides

 4

classification schemes to group and associate application
information and interface objects. The model’s advantage is a
clear separation of the different aspects of user interface.

The RUX (Rich User eXperience) model [50] is used for
the systematic adaptation of user interfaces over the existing
web applications. The user interface specification is divided
into four levels: 1) Concepts and Tasks, 2) Abstract Interface,
3) Concrete Interface and 4) Final Interface. Concepts and
Tasks are taken from the underlying web model. Abstract
Interface provides a common representation to all devices and
interface development platforms without any kind of spatial
arrangement or behaviour. Concrete Interface optimizes the
presentation of user interface for a specific device or group of
devices, and has three Presentation levels: Spatial Presentation
allows the spatial arrangement and interface style of to be
specified; Temporal Presentation allows the specification of
behaviours which require a temporal synchronization; and
Interaction Presentation allows modelling the user’s behaviour.
Final Interface provides code generation of the modelled
application. The advantage of the RUX model is a hierarchy of
interface entities from most abstract to specific ones, which
could be easily mapped to the hierarchy of models according to
the model-driven architecture (computation-independent,
platform-independent, and platform specific models).

Currently commonly used software interface patterns (such
as MVC or PAC) are derived from the Seeheim model. The
Presentation–Abstraction–Control (PAC) pattern [51] separates
an interactive system into three types of components
responsible for specific aspects of the application's
functionality. The abstraction component retrieves and
processes the data, the presentation component formats the
visual and audio presentation of data, and the control
component handles things such as the flow of control and
communication between the other two components. In the
Model–View–Controller (MVC) pattern (Fig. 4), the Model
consists of application data and business rules, the Controller
acts as mediator like the Dialogue component in the Seeheim
architecture, and a View can be any output representation of
data [52]. Model–View–Presenter (MVP) is a derivative of
MVC, where the presenter assumes the role of the Controller,
retrieves and formats data for the View, the View is
responsible for handling the user interface events, which is the
controller's role in MVC, and the Model is strictly a domain
model. In Model-View-ViewModel (MVVM), the ViewModel
is responsible for providing access to data objects and backend
logic from the Model. View is all elements displayed by the
user interface. Model is either a domain model which
represents the real state content, or the data access layer that
represents that content.

Fig. 4. The MVC pattern

All analysed models of interface interaction and adaptation
emphasize the role of feedback in the interface adaptation
process. For interface customization, a separate dedicated
interface (or interface layer) is required. We call this interface,
the meta-interface, since it is overlaid on top of the software
product’s interface and allows making configuration choices on
the product’s interface. One example of such meta-interface is
the Facebook’s Like button (see Fig. 5, a), which allows the
Facebook users to express their opinion on the content of a
website. The button provides a one-click shortcut to express
and externalize the affective reactions of a user. Another
example of meta-interface is provided by Usabilla
(www.usabilla.com), which is a service for real-time visual
user feedback tracking. The users of the website click the
feedback button and can select any part of the page to evaluate
it (see Fig. 5, b). Google provides a similar mechanism, where
users can highlight any areas of web interface, black out
personal information, comment on relevant issues and send it
to Google (see Fig. 5, c).

Fig. 5. Feedback in (left to right): Facebook, Usabilla and Google.

Summarizing, two possible implementations of feedback
are usually considered [53]: 1) Emoticons-based feedback:
aiming at expressing the emotionally affected satisfaction
degrees among the end-users via picking an emoticon (virtual
facial expression) for judging his user experience [6]; 2)
Recommendation frames: a simple interaction illustrated
differently (e.g. pop-up window, sliding area), which is mainly
used in e-commerce to provide client recommendations. The
implementation of such meta-interface together with the need
for handling community requests and implementation of
conflict resolution and opinion aggregation mechanisms for
crowdvoting, requires the extension of existing user interface
development architectures and design patterns.

III. FRAMEWORK OF COMMUNITY-DRIVEN USER INTERFACE
DEVELOPMENT

The proposed framework of community-driven user
interface development consists of 1) the contextual feedback
based adaptation (CFBA) metamodel, 2) the four-tiered user
interface (4TUI) architecture, and 3) the Model-Control-View-
Adapter (MCVA) pattern.

The CFBA metamodel (see Fig. 6) describes the
relationship between different entities and models in the
modelling and implementation of adaptable and evolvable user
interfaces. The metamodel is based on the Norman’s Model
[42], Taylors Layered Protocols [45], Seeheim model [47] and
its implementations as user interface design patterns (PAC,
MVC and their variants), Bezold’s model [48], Baxley’s model
[49] and RUX model [50]. The CFBA metamodel actually
features two interaction cycles: 1) a traditional cycle, where a
user and a system exchange with messages and feedbacks
during the system’s use, and 2) a community-driven cycle,

 5

where a crowdvoting entity collects feedback from a
community of users and changes the presentation of the
interface according to the needs of the majority of users.

The community (crowd) is treated as a part of context that
depends on the Context Model. To collect the opinion and

judgments of the community of user interface, the crowdvoting
[23] mechanism is used. The implementation of the user
interface is described by the adaptation of the Seeheim model.

Fig. 6. Contextual feedback based user interface adaptation metamodel

However, where is a difference, the Presentation entity is
variable and different variants of interface presentation can be
selected according to the requests of the community aiming to
guarantee usability while achieving adaptation to the changing
needs of the community of users. The relationship of interface
to other models is given by the adaptation of the Baxley’s
model: Structure depends upon Task Model, Behaviour
depends upon Dialog and Navigation Model, and Presentation
depends upon interface Metaphor.

Modelling of user interface at different levels of abstraction
is represented by the adaptation of the RUX model, where a
hierarchy of interfaces is used to represent interface
independence and specificity with respect to different platforms
and / or user groups, while allowing to implement automatic
generation of interfaces [54]. We adopt the elements of
crowdsourcing, i.e. crowdvoting, as a model [55] for solving a
problem of interface adaptability and evolvability at use time.

The 4TUI architecture (see Fig. 7) describes the structural
organization of the community-driven user interface system.
The proposed architecture is an extension of the classic three-
tiered architectures and models (such as MVC pattern), which
include Persistence layer for data storage and handling,
Business layer for business logic; and Presentation layer for
content delivery. The additional fourth layer (tier) is proposed
for managing community requests for interface representation
and community-driven reasoning based on crowdvoting. This
layer performs the functions of the semantic layer in the
Bezold’s model [48]. The functions of layers in the four
layered system are summarized in Table 1.

The MVCA pattern (see Fig. 8) is an extension of the MVC
family of patterns with an additional class for managing the
community-driven requests for user interface modification.
Since the community may include users with conflicting
interests, a mechanism for solving these conflicts is required.

Fig. 7. Proposed four layered architecture of community-driven business
applications

TABLE I. FUNCTIONS OF LAYERS IN FOUR LAYERED SYSTEM

Layer Function
Persistence Stores data and handles requests for data
Business Specifies business objects and business logic

rules, and handles interfacing between presented

Community Layer

 6

information and stored data
Presentation Delivers content to browser
Community Manages community requests for interface

change and provides representation conflict
resolution

The proposed solution is finding sub-communities or
groups of users with similar interests based on their profiles
and interface preferences, and providing customized variants of
interfaces to these particular groups. The mechanism for
conflict solving is based on the consensus-based user profile
determination method [40].

Fig. 8. Handling interface adaptation requests using the MVCA pattern

The proposed approach for the community-driven user
interface adaptation combines elements of the following
methodologies: Design-for-change [56] for developing
interface that is evolvable and adaptable to anticipated and
unanticipated changes; Meta-design [57] and related
methodologies (End-User Development [58], Participatory
Design [59], Collaborative Design [60], etc.) as a theoretical
foundation for involvement of end-users as co-designers of a
product; and Crowdsourcing [1] for enabling the participation
of a crowd (i.e., a community of dedicated users) in the user
interface improvement and evolution process.

IV. CONCLUSIONS
The social collaboration based approach can be applied to

the process of user interface development. The community of
users can drive the evolution of user interfaces to increase their
flexibility (the interface adapts flexibly to change requirements
of the users), plasticity (the interface’s capacity of adaptation to
cope with changing context), quality (the interface of a product
represents the combined efforts aka collective intelligence of
the community of users), usability (the community itself selects
and adopts via natural selection the best practices of interface
design), cultural acceptance (the interface reflects the culture of
its users), user satisfaction (opportunity to have a say and an
impact increases user satisfaction) and product popularity (the
users have control over what they see and what they get).

The advantages of the proposed framework for community-
driven user interface adaptation are as follows: iterative
refinement of user interface enables interface evolution; the
community performs interface evaluation; interface
dynamically changes in response to the changing requirements
of the community; the user interface evolution process is
outsourced to the community of users and is fully automated;
community feedback ensures that interface of the product is
prevented from ageing and decay so long as the community is
interested in the services provided by the product itself;
collective intelligence allows to evolve a user interface that is
inherently usable, culturally-acceptable and visually-pleasant;
direct real-time user participation in the user interface
evolution increases user engagement and satisfaction; interface

quality is ensured by the intelligent voting mechanisms that
harnesses “wisdom of crowds” and retargets interface for a
specific groups of users.

REFERENCES
[1] J. Howe, “The rise of crowdsourcing”, Wired 14(6), 2006.
[2] P. Waterson, “Motivation in Online Communities”, in S. Dasgupta (ed.)

Encyclopedia of Virtual Communties, 2006.
[3] P. Kollock, “The economies of online cooperation: gifts and public

goods in cyberspace”, in M.A. Smith, P. Kollock, (Eds.), Communities
in Cyberspace, pp. 220-238. London: Routledge.1999.

[4] D. Schuler and A. Namioka, Participatory design: Principles and
practices. Hillsdale, NJ: Erlbaum, 1993.

[5] J. Roberts, I.-H. Hann and S. Slaughter, “Understanding the
Motivations, Participation and Performance of Open Source Software
Developers: A Longitudinal Study of the Apache Projects”,
Management Science 52(7), July 2006, pp. 984 - 999.

[6] S. Abeyratna, G.V. Paramei, H. Tawfik and R. Huang, “An Affective
Interface for Conveying User Feedback”, Proc. of 12th International
Conference on Computer Modelling and Simulation (UKSim), pp. 369-
374, 2010.

[7] S. Stumpf, E. Sullivan, E. Fitzhenry, I. Oberst, W.-K. Wong and M.M.
Burnett, “Integrating rich user feedback into intelligent user interfaces”,
Proc. of International Conference on Intelligent User Interfaces (IUI
2008), pp. 50-59, 2008.

[8] J. Eisenstein, J. Vanderdonckt and A. Puerta, “Adapting to mobile
contexts with user-interface modeling”, Proc. of the Third IEEE
Workshop on Mobile Computing Systems and Applications
(WMCSA'00), pp. 83-92, 2000.

[9] G. Menkhaus and W. Pree, “User interface tailoring for multi-platform
service access”, Proc. of the 7th international conference on intelligent
user interfaces (IUI '02), pp. 208-209, 2002.

[10] P. Repo, “Facilitating user interface adaptation to mobile devices”, Proc.
of the third Nordic conference on Human-computer interaction
(NordiCHI '04), pp. 433-436, 2004.

[11] M. Bisignano, G. Di Modica and O. Tomarchio, “Dynamic User
Interface Adaptation for Mobile Computing Devices”, Proc. of the 2005
Symposium on Applications and the Internet Workshops (SAINT-W
'05), pp. 158-161, 2005.

[12] G. Calvary, J. Coutaz and D. Thevenin, “Supporting Context Changes
for Plastic User Interfaces: a Process and a Mechanism”, Proc. of the
Joint AFIHM-BCS Conf. on Human-Computer Interaction IHM-HCI
2001, vol. I, pp. 349-363. Springer, London, 2001.

[13] W.S. Lasecki, K.I. Murray, S. White, R.C. Miller and J.P. Bigham,
“Real-time Crowd Control of Existing Interfaces”, Proc. of the ACM

Community

Adapter
Adapt Interface
Updateinterface

 7

Symposium on User Interface Software and Technology (UIST 2011),
pp. 23-32, 2001.

[14] J. Dicker and B. Cowan, “Platforms for Interface Evolution”, Proc. of
ACM CHI 2008 Conference on Human Factors in Computing Systems
(CHI’08).

[15] M. Speicher, Crowdsourced Evaluation and Adaptation of Web
Interfaces for Touch. Master thesis. Global Information Systems Group,
ETH Zurich, 2012.

[16] A.K. Dey, “Understanding and Using Context”, Personal and ubiquitous
computing, Vol. 5, February 2001, pp. 4-7.

[17] S. Hennig, J. Van den Bergh, K. Luyten and A. Braune, “User driven
evolution of user interface models - The FLEPR approach”, Proc. of the
13th IFIP TC 13 international conference on Human-computer
interaction - (INTERACT'11), Part III. Springer-Verlag, pp. 610-627,
2011.

[18] N. Wiener, Cybernetics: or Control and Communication in the Animal
and the Machine. Cambridge: MIT Press, 1948.

[19] M. Norgaard and K. Hornbaek, Exploring the value of usability
feedback formats. International Journal of Human-Computer Interaction
25(1), pp. 49-74, 2009.

[20] J. Allwood, J. Nivre and E. Ahlsén, “On the semantics and pragmatics of
linguistic feedback”, Journal of Semantics 9(1), 1992, pp. 1-26.

[21] P. Kotzé, “Feedback And Task Analysis For E-Commerce Sites”, Proc.
of the ISSA 2002 Information for Security for South-Africa 2nd Annual
Conference, 10-12 July 2002, Muldersdrift, South Africa, pp. 1-17.

[22] A. Warr and E. O'Neill, “Getting Creative with Participatory Design”,
Proc. of Participatory Design Conference, 2004, pp. 57-61.

[23] J.M. Leimeister, “Collective Intelligence”, Business & Information
Systems Engineering, 2(4), 2010, pp. 245-248.

[24] J. Surowiecki, The Wisdom of Crowds, Anchor, 2005.
[25] A. Spink and T. Saracevic, “Human-computer interaction in information

retrieval: Nature and manifestations of feedback”, Interacting with
Computers, 10(3), pp. 249-267, 1998.

[26] M.M. Lehman and L.A. Belady (eds.), Program evolution: processes of
software change. Academic Press Professional, 1985.

[27] C. Ghezzi, P. Inverardi and C. Montangero, “Dynamically Evolvable
Dependable Software: From Oxymoron to Reality”, in P. Degano, R.
Nicola and J. Meseguer (Eds.), Concurrency, Graphs and Models, LNCS
vol. 5065. Springer-Verlag, pp. 330-353, 2008.

[28] F. Heller, L. Lichtschlag, M. Wittenhagen, T. Karrer and J. Borchers,
“Me Hates This: Exploring Different Levels of Use”, Proc. of ACM CHI
2011 Conference on Human Factors in Computing Systems (CHI 2011),
2011, pp. 1357-1362.

[29] R. Mendoza Gonzalez, J. Munoz Arteaga, F.J Alvarez and M. Vargas
Martin, “Integration of auditive and visual feedback in the design of
interfaces for security applications”, in Workshop on Perspectives,
Challenges and Opportunities for Human-Computer Interaction in Latin
America (CLIHC), Rio de Janeiro, Brazil, 2007.

[30] L. Cerrato, “A comparison between feedback strategies in human-to-
human and human-machine communication”, Proc. of 7th International
Conference on Spoken Language Processing, ICSLP2002 -
INTERSPEECH 2002, Denver, Colorado, USA, September 16-20, 2002.

[31] R.-J. Beun, R.M. van Eijk and H. Prust, “Ontological Feedback in
Multiagent Systems”, Proc. of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS '04), Vol. 1,
pp. 110-117, 2004.

[32] G. Fischer, “Understanding, fostering, and supporting cultures of
participation”, Interactions 18(3), pp. 42-53, 2011.

[33] G. Fischer, “End User Development and Meta-Design: Foundations for
Cultures of Participation”, Journal of Organizational and End User
Computing, 22(1), pp. 52-82, 2010.

[34] S. Kopp, J. Allwood, K. Grammer, E. Ahlsén and T. Stocksmeier,
“Modeling Embodied Feedback with Virtual Humans”, ZiF Workshop,
2006, pp. 18-37.

[35] A. Sears and B. Shneiderman, “Split menus: effectively using selection
frequency to organize menus”, ACM Transactions on Computer-Human
Interaction (TOCHI), v.1 n.1, p.27-51, March 1994.

[36] K.Z. Gajos, D.S. Weld, and J.O. Wobbrock, “Decision-theoretic user
interface generation”, Proc. of the 23rd national conference on Artificial
intelligence (AAAI'08), Vol. 3, pp. 1532-1536, 2008.

[37] K. Gajos, D. Christianson, R. Hoffmann, T. Shaked, K. Henning, J.J.
Long and D.S. Weld, “Fast and robust interface generation for
ubiquitous applications”, Proc. of the 7th international Conference on
Ubiquitous Computing (UbiComp'05), pp. 37-55, 2005.

[38] M.A. Pérez, “Conversational dialogue in graphical user interfaces:
interaction technique feedback and dialogue structure”, in CHI 95
Conference Companion, 1995, pp. 71-72.

[39] J. Kim, R. Kumar and S.R. Klemmer, “Crowdsourcing Interface for
Collecting Correspondences of Web Pages”, UIST '09 Poster, Victoria,
BC, Canada 2009.

[40] J. Sobecki and N.T. Nguyen, “Consensus-based adaptive interface
construction for multiplatform Web applications”, Proc. of 4th
International Conference on Intelligent Data Engineering and Automated
Learning, IDEAL 2003. Springer LNCS Vol. 2690, 2003, pp. 457-461.

[41] B. Lafreniere and M. Terry, “Socially-Adaptable Interfaces:
Crowdsourcing Customization”, Proc. of ACM CHI 2011 Conference on
Human Factors in Computing Systems (CHI 2011), 2011.

[42] D.A. Norman, “Cognitive Engineering”, in D.A. Norman and S.W.
Draper (eds.), User Centered System Design. Lawrence Erlbaum
Associates, Hillsdale, 1986, pp. 31–61.

[43] V. Lopez-Jaquero, J. Vanderdonckt, F. Montero, and P. Gonzalez,
“Towards an Extended Model of User Interface Adaptation: The Isatine
Framework”, in J. Gulliksen, M.B. Harning, P. Palanque, G.C. Veer and
J. Wesson (Eds.), Engineering Interactive Systems, LNCS, Vol. 4940.
Springer-Verlag, Berlin, Heidelberg, pp. 374-392, 2008.

[44] H. Dieterich, U. Malinowski, T. Kühme and M. Schneider-Hufschmidt,
“State of the Art in Adaptive User Interfaces”, in: M. Schneider-
Hufschmidt, T. Khüme and U. Malinowski (eds.), Adaptive User
Interfaces: Principle and Practice. North Holland, Amsterdam, 1993.

[45] J.H. Eggen, R. Haakma and J.H.D.M. Westerink, “Layered Protocols:
hands-on experience”, International Journal on Human–Computer
Studies, 1996, 44, pp. 45–72.

[46] R. Haakma, Layered Feedback in User-System Interaction, Master
thesis, Eindhoven University of Technology.

[47] A.J. Dix, B. Russell and A. Wood, “Architectures to make Simple
Visualizations using Simple Systems”, Proc. of Advanced Visual
Interfaces, AVI2000, 2000, pp. 51-60.

[48] M. Bezold, “A Semantic Framework for Adapting Interactive Systems in
Intelligent Environments”, Proc. of Intelligent Environments 2009, pp.
204-211.

[49] B. Baxley, “Universal model of a user interface”, Proc. of Conference on
Designing for user experiences (DUX '03), pp. 1-14, 2003.

[50] J.C. Preciado, M.L.Trigueros and F. Sánchez-Figueroa, “An Approach
to Support the Web User Interfaces Evolution”, Proc. of the 2nd Int.
Workshop on Adaptation and Evolution in Web Systems Engineering
AEWSE'07, 2007. CEUR Workshop Proc. 267.

[51] J. Coutaz, “PAC: an Implementation Model for Dialog Design”, Proc. of
the Interact'87 conference, 1987, pp. 431–436.

[52] O. Moravcik, T. Skripcak, D. Petrik and P. Schreiber, “Approaches of
the Modern Software Development”, International Journal of Machine
Learning and Computing, Vol. 1, No. 5, December 2011, pp. 479-487.

[53] N. Mezhoudi, “User interface adaptation based on user feedback and
machine learning”, IUI Companion, 2013, pp. 25-28

[54] V. Štuikys, R. Damaševičius, J. Valančius, G. Ziberkas, V.
Limanauskienė and E. Toldinas, “Generation of Database Interfaces for
Nomadic Users”, Information Technology & Control, No. 2(27), pp. 41-
50, 2003.

[55] D. Brabham, “Crowdsourcing as a model for problem solving: An
introduction and cases”, Convergence: The International Journal of
Research into New Media Technologies, 14(1), pp. 75-90, 2008.

[56] V. Štuikys, R. Damaševičius, M. Montvilas, V. Limanauskiene and G.
Ziberkas, “Educational Portal Development Model for Implementing
Design for Change”, Information Technology and Control, 35(3), pp.
222-228, 2006.

 8

[57] G. Fischer, “Meta-Design: A Conceptual Framework for End-User
Software Engineering”, in M.M. Burnett, G. Engels, B.A. Myers and G.
Rothermel (eds.), End-User Software Engineering, Dagstuhl Seminar
Proc. 07081, Schloss Dagstuhl, Germany, 2007.

[58] H. Lieberman, F. Paternó, M. Klann and V. Wulf, “End-user
development: An emerging paradigm”, in H. Lieberman, F. Paterno and
V.Wulf (eds.), End-user development. Springer, pp. 9-15, 2005.

[59] Y. Dittrich, S. Eriksén and C. Hansson, “PD in the Wild; Evolving
Practices of Design in Use”, Proc. of the Participatory Design
Conference (PDC 02), 2002, pp. 124-134.

[60] L. Zhu, “Cultivating collaborative design: design for evolution”, Proc. of
the Second Conference on Creativity and Innovation in Design (DESIRE
'11), pp. 255-266, 2011.

