Combinatorial Summation Primes: a Discussion
of Different Methods to Solve the Problem

Kamil Ksiagzek
Faculty of Applied Mathematics
Silesian University of Technology
Gliwice, Poland
Email: kamiksi862@student.polsl.pl

Abstract—This paper illustrates combinatorial summation
numbers by means of computer operations. The aim of the
research is to give a definition of all different primes which sum is
equal 100, where the smallest combination has only two elements
and the biggest has nine elements. This paper presents some ways
to deal with this problem. There are analyzed two methods. One
of them uses nested loops (non-recursive method), second way is
connected with stacks (recursive method).

Index Terms—prime, summation, stack, loop, analysis, recur-
sion

I. INTRODUCTION

The computational complexity of algorithms, one of the
most important problem of computer science, is clearly one
of the most important aspects of computer science. Although
computers repeatedly increased its computing power, still
micro machines are working on acceleration of existing al-
gorithms. The problem remains an open question whether
the higher performance algorithms are recursive, or may not
recursive versions are faster.

There are reported many approaches to increase computa-
tional efficiency. Gabryel presented devoted methods to imple-
ment in data base systems, where implemented method serve
as efficient tool for data management in high performance SQL
environments [1] and human supporting systems for medical
purposes by Wozniak et al. [20] and daily routine assistance
by Damasevicius et al. [12]. Grycuk et al. presented devoted
architectures to process visual data by clustering based on
inverse frequency [2], and improved approach for multi-layer
SQL architectures [3]. Czerwinski presented Hadoop imple-
mentation of data filtering [4], where information streaming
was processed by developed system. Nowicki et al. developed
intelligent processing of information in data mining with more
efficient categorization approach [14]. Similarly to architec-
tures algorithms with dedicated structures and commands have
a great impact on development in computer science [10].
Carlsson et al. presented devoted sublinear sorting methods
[5], Rauh proposed median based method [11]. Cole discussed

Copyright © 2016 held by the authors.

28

Zbigniew Marszatek
Institute of Mathematics
Silesian University of Technology
Gliwice, Poland
Email: Zbigniew.Marszalek @polsl.pl

efficiency in parallelization of processing [6], while Gubias ex-
tended this approach on various structures of input information
[7], and Wozniak et al. proposed devoted versions of sorting
methods developed for large data sets by the use of merge sort
[19] and quick sort model [18]. Benchmark tests on improved
versions of merge sort methods were presented by Marszalek
et al. [17]. Practical approaches to implement sorting methods
are presented by Huang and Langston [8], with extension for
devoted main memory usage by Huang and Langston [9].
High efficiency request service models for SQL systems were
presented by Wozniak et al. [13]. Similarly advances in man-
machine interactions management can significantly improve
efficiency and quality of service as presented by Polap et al.
[15], [16].

This paper presents benchmark tests on improvements in
computer methods by introduction of non recursive algorithm
in comparison to its regular version. In the following sections
we present different versions of combinatorial algorithm for
determining the sum of the set of numbers using primes.
Performance tests show the effectiveness of the proposed
algorithm operating on the stake.

II. NESTED LOOPS ’FOR’ - NON-RECURSIVE METHOD

In the research on efficiency of non recursive approach
we have implemented two versions of algorithm used for
combinatorial summation of primes that comply condition that
a sum is equal 100.

A. Description

A prime is a number which has only two divisors: 1
and itself. The initial step is isolation primes from first 100
numbers. You can use a algorithm which works like the
Sieve of Eratosthenes. By hand, we should create a table with
numbers from 0 to 100, where 0 and 1 are not prime and not
composite. We are starting our search from next number - 2,
which is prime so every multiplies of 2 are composite. Now we
can cross off these numbers from the table. Next number which
is left on the table is 3. We should remove every multiplies of 3
and repeat the process until you find the last prime number less
than 100. These are all steps of the implemented algorithm. To
apply it you should create a boolean table (the last element will
be *100’). A loop ’for’ assigns frue to all elements. Second

loop ’for’ explore numbers from 2 to 100. If a constituent
has a true value all its multiplies will be marked false. Every
primes (with 0 and 1) are designated frue now. The next step
is to transfer all primes to separate array - there it will make
necessary calculations.

After preparing the base for computations the program is
finding all combinations which meet the conditions (the sum
is equal 100). Nested loops ’for’ (their amount depend on
elements of the combinations) are searching every components
of array. Conditional statements choose only these different
from each other, whose sum is equal 100. Effective procedure
requires eight steps - n-elements combinations need n nested
loops ’for’. If a combination meets the conditions, a method
"Write’ from StreamWriter is saving a result to the files. Every
stage is stored in separate places. This method is non-recursive.
The Block Diagram of the general part of this program is
showed on Fig. 11. An example of nested loops ’for’ (4-
elements combinations) is presented in Fig. 12.

B. Information about research and benchmark tests

Presented methods had been written in C++ CLR Microsoft
Visual Studio 2013. We would like to describe two points
of view in numbers summation. After the presentation of
algorithms we are going to compare these methods. Researches
had been done with Stopwatch from System.::Diagnostics class.
The measurements were performed at two time units: seconds
and CPU ticks. CPU clock cycle allow to estimate how fast
a processor carries out essential operation. Data based on 100
tests for all programs. The results are the arithmetic average.
During the research has been used Intel Xeon CPU E3-1241
v3 3.50GHz.

C. Analysis of efficiency

This solution is not effective enough (compare to Fig. 1
- Fig. 4). The most important disadvantage is the length of
calculation. Searching 2-7-elements combinations ends with
success. There exist no 8-elements sequence and one 9-
elements sequence that fills the conditions. A huge calculation
causes slowing of computation. We should notice that the
program permutes found combinations. It would be enough
to write only one sequence. We have to eliminate duplications
in files, ie. by our calculations based on the finding of repeated
sequences without removing repetitions. You can see that
non-recursive method is inefficient, but still the results are
acceptable.

Analyzing Table I we can see that searching time connected
with 1 to 6-elements combination is relatively low but in case
for 7 and 9 elements is several times larger. There exist only
one 9-elements combination which meets task’s condition so
we have stopped tests after finding a first sequence with correct
solution. If you tried apply this idea in similar way for instance
to find different primes which sum equals more than 100, you
would get results even slower.

III. STACKS - RECURSIVE METHOD

Let us now discuss possible improvement by application
of recursive approach, where instead of repetition of cycles

29

Speed test (sum equals 100, combinations from 2- to 7- elements)
332

33
328
326
24
2.2

32
318
316

NE AR PPR PR ERPE PO D P P

Number of measurement

Time (in seconds)

Figure 1. Chart of time of summation (Nested loops, sum equals 100, part

D

Speed test (sum equals 100, combinations from 2- to 7- elements)

113000000
112500000
112000000
111500000
111000000
110200000
110000000
109500000
109000000
108500000

Time (in CPU ticks)

© W ©

o

a N

& N

PR PP P A AR)

Number of measurement

& & P

Figure 2. Chart of time of summation (Nested loops, sum equals 100, CPU
clock cycles, part 1)

Speed test (sum equals 100, 9-elements combinations)
215
214
213
21.2
21

21

Time (in seconds)

209

Ne2RA P PPREA R P RPR P ST TP RPS

Number of measurement

Figure 3. Chart of time of summation (Nested loops, sum equals 100, part
2)

we have introduced computational technique that enables self
recalling in procedures for more efficient processing.

A. Description

There exists other method to solve our problem. We can
use stacks (Last In First Out - LIFO) from namespace Sys-
tem::Collections. As we will see, this solution is more efficient
and suitable. It is recursive method. The last algorithm was
constructed only for one case (sum primes equals 100). In
that situation you can easily change model.

Table 1
ANALYSIS OF EFFICIENCY - NESTED LOOPS

number of elements 2 3 4 5 6 7 9

average (in seconds) 0.000038197 | 0.00095737 | 0.00338778 | 0.0552465 | 1.1553366 | 31.1835792 | 21.2075880
minimum (in seconds) 0,000019900 | 0.00005150 | 0.00229490 | 0.0427253 | 1.1486146 | 30.9947676 | 21.1009756
average (in CPU ticks) 130.9 327 11576 148634 3947798 106554599 72466562
minimum (in CPU ticks) 68 158 7842 145993 3924829 105909462 72102266

Combined Minimum Time (in seconds) 53.2894494

Combined Average Time (in seconds) 53.6052720

Combined Minimum Time (in CPU ticks) 182090618

Combined Average Time (in CPU ticks) 183129627

Speed test (sum equals 100, 9-elements combinations)

73400000
73200000
73000000
72800000
72600000
72400000
72200000
72000000
71800000
71600000
71400000

Time (in CPU ticks)

NOR P RD R R PR RS PO DD PP

Number of measurement

Figure 4. Chart of time of summation (Nested loops, sum equals 100, CPU
clock cycles, part 2)

The first step is also finding all primes between 0 and 100.
We can solve the problem similarly as before. The next stage
is different. We should create two stacks: one "temporary"
stack (a place, where we could store numbers) and nested
stack which will collect sums equal 100. The construction is
shown on Fig. 5. There could be used recursion connected
with the amount of numbers. If the sum in "temporary" stack
is more than 100, the algorithm will end the operation. A
loop ’for’ gives to the stack primes (for instance "i") and runs
recursion to "i-1". If the sum on the stack is equal 100, this
result is added to nested stack (a collection of every solutions
of our problem). The loop removes number "i" from the stack.
The main part of the program is presented on Fig. 6. Optimal
results are printed to the file.

1) Analysis of efficiency: This method is very efficient.
Results are printed in one file and there is no repetition of our
combinations. You can get solutions faster than for previous
approach as it is presented in Tab. II.

You can easy modify this algorithm. Last program was
constructed special for primes which sum is 100. In that option
you can write other sum - the algorithm is universal. It is
presented in Fig. 5 and Fig. 6. Using recursive searching with
stacks is most favorable. We were doing also a research with
other sum. The program have found primes which sum is equal
200. Results were very good: it was faster than finding last sum
in the algorithm "nested loops".

START

(()

\ 4

array<int>" primes;

\ 4
Stack<int>" tmp = gcnew
Stack<int>;

Y

Stack<Stack<int>A>A found =
| genew Stack<Stack<int>">;

Y

int sum(array<int>"
elements);

ints =0;

s<elements->Length?
NO

YES
y

s += primes[elements[i]];
v 4
s << returns; >>
]

Figure 5. Block Diagram of the recursive program ’Stacks’

IV. COMPARISON AND DISCUSSION

There is a big difference between presented methods. The
recursive program with stacks is several times faster than
nested loops (non-recursive). We could see in Tab. I that
combined minimum time in case of nested loops is 53.2894494
seconds but complete time in case of recursion is 0.0025118
seconds. In addition clarity of results is much better. Moreover,
time necessary to finding every primes which sum equals 200
is also smaller than previous sum in nested loops: 0.272592
seconds.

The algorithm in second method is universal but in first case

30

Table 11
ANALYSIS OF EFFICIENCY - STACKS

algorithm arithmetic mean (in seconds) | arithmetic mean (CPU ticks) | minimum (in seconds) | minimum (in CPU ticks)
100 - recursion 0.00282584 9656.09 0.0025118 8583
200 - recursion 0.28448827 97212.83 0.272592 93415
< void recursion_in_searching(int size) >
Speed test (sum equals 100) - CPU ticks
14000
12000
g 10000 \LWWN\/*VM.,\/M
el
S 8000
o
© 6000
£
@ 4000
E
Y F 2000
] 0
No I I AT I S o R B A S
s Number of measurement
YES
A 4
| tmp->Push(i) | Figure 8. Chart of time of summation (Stack, sum equals 100, CPU clock
l cycles)
| recursion_in_searching(i-1); |
Speed test (sum equals 200) - seconds
0.33
0,32
YES 03
\ 4 § 03
| found->Push(gcnew Stack<int>(tmp)); | § 0.29
w028
NO % 027
| tmn->Ponl(: | E 0,26
mp->Pop(); 0.25
¢ \ 4 0.24
(STOP) SR R PSRN PSR RN P P
| i~ | Number of measurement

]

Figure 6. Block Diagram of the recursion in searching a specific sum. Figure 9. Chart of time of summation (Stack, sum equals 200)

Speed test (sum equals 100) - seconds
0.004 Speed test (sum equals 200) - CPU ticks
0,0035 115000
gz 00 110000
g 0,0025
§ 0.002 [105000
£ 00015 = 100000
o
g o000 ‘;:’ 95000
= =
0,0005 = 90000
E
0 F 85000
VAL A PR AR DRSS GG D D
80000
Number of measurement N D g e AR P PP AN AL g PP
Number of measurement

Figure 7. Chart of time of summation (Stack, sum equals 100)

Figure 10. Chart of time of summation (Stack, sum equals 200, CPU clock
cycles)

31

it could add loops which will explore more than 9-elements
combinations. Structure of the method in ’nested loops’ is not
programmer friendly, since it is easy to get confused while
programming this approach, however the general idea can be
more clear for beginners. Recursive approach is not as easily
understandable for beginners and may cause some problems in
understanding, however it’s structure is programmer friendly
and easily computed in implemented approach.

V. CONCLUSIONS

We have compared two method implemented to determine
summation primes. The recursive algorithm connected with
stacks is several times faster and it is useful in other cases.
The speed of operation is much better and versatility of this
method allow to apply it in every sums. Recursive algorithm
is very efficient in combinatorial summation of numbers.

In the next research we plan to improve proposed approach
by introduction of parallelization to the code, what can help
on more efficient processing and decrease computation time.
Moreover it could be interesting to implement similar approach
based on computational intelligence, to compare efficiency and
discuss possible advantages.

REFERENCES

[11 M. Gabryel, “The bag-of-features algorithm for practical applications
using the mysql database,” Lecture Notes in Artificial Intelligence -
ICAISC 2016, vol. 9693, pp. 635-646, 2016, DOI: 10.1007/978-3-319-
39384-1_56.

R. Grycuk, M. Gabryel, M. Korytkowski, and R. Scherer, “Content-
based image indexing by data clustering and inverse document fre-
quency,” Communications in Computer and Information Science -
BDAS’2014, vol. 424, pp. 374-383, 2014, DOI: 10.1007/978-3-319-
06932-6.

R. Grycuk, M. Gabryel, R. Scherer, and S. Voloshynovskiy, “Multi-layer
architecture for storing visual data based on WCF and microsoft SQL
server database,” Lecture Notes in Artificial Intelligence - ICAISC 2015,
vol. 9119, pp. 715-726, 2015, DOI: 10.1007/978-3-319-19324-3.

D. Czerwinski, “Digital filter implementation in hadoop data mining
system,” Communications in Computer and Information Sciences -
CN’2015, vol. 522, pp. 410-420, 2015, DOI: 10.1007/978-3-319-19419-
6_39.

S. Carlsson, C. Levcopoulos, and O. Petersson, “Sublinear merging and
natural merge sort,” Lecture Notes on Computer Science - SIGAL’1990,
vol. 450, pp. 251-260, 1990, DOI: 10.1007/3-540-52921-7_74.

R. Cole, “Parallel merge sort,” SIAM Journal on Computing, vol. 17,
no. 4, pp. 770-785, 1988, DOI: 10.1137/0217049.

L. Gubias, “Sorting unsorted and partially sorted lists using the natural
merge sort,” Software Practice and Experience, vol. 11, no. 12, pp.
1339-1340, 2006, DOI: 10.1002/spe.4380111211.

B. Huang and M. Langston, “Practical in-place merging,” Com-
munications of ACM, vol. 31, no. 3, pp. 348-352, 1998, DOI:
10.1002/spe.4380111211.

B. Huang and M. Langston, “Merging sorted runs using main mem-
ory,” Acta Informatica, vol. 27, no. 3, pp. 195-215, 1989, DOI:
10.1007/BF00572988.

M. Lutz, L. Wegner, and J. Teuhola, “The external heap sort,” IEEE
Transactions on Software Engineering, vol. 15, no. 7, pp. 917-925, 1989,
DOI: 0098-5589/89/0700-0917.

A. Rauh and G. Arce, “A fast weighted median algorithm based on quick
select,” in Proceedings of the IEEE 17th International Conference on
Image Processing. 26-29 September, 2010, Hong Kong: IEEE, 2010,
pp. 105-108.

R. Damasevicius, M. Vasiljevas, J. Salkevicius, and M. WozZniak, “Hu-
man activity recognition in aal environments using random projections,”
Computational and Mathematical Methods in Medicine, vol. 2016, pp.
4073 584:1-4073 584:17, 2016, DOI: 10.1155/2016/4073584.

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

(12]

32

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

M. Wozniak, M. Gabryel, R. K. Nowicki, and B. Nowak, “An application
of firefly algorithm to position traffic in nosql database systems,”
Advances in Intelligent Systems and Computing - KICSS’2014, vol. 416,
pp. 259-272, 2016, DOI: 10.1007/978-3-319-27478-2_18.

R. K. Nowicki, B. Nowak, and M. Wozniak, “Application of rough
sets in k nearest neighbours algorithm for classification of incomplete
samples,” Advances in Intelligent Systems and Computing - KICSS’2014,
vol. 416, pp. 243-257, 2016, DOI: 10.1007/978-3-319-27478-2_17.

D. Potap, M. WozZniak, C. Napoli, and E. Tramontana, “Is swarm
intelligence able to create mazes?” International Journal of Electronics
and Telecommunications, vol. 61, no. 4, pp. 305-310, 2015, DOI:
10.1515/eletel-2015-0039.

D. Potap, M. Wozniak, C. Napoli, and E. Tramontana, “Real-time
cloud-based game management system via cuckoo search algorithm,”
International Journal of Electronics and Telecommunications, vol. 61,
no. 4, pp. 333-338, 2015, DOI: 10.1515/eletel-2015-0043.

Z. Marszatek, G. Wozniak, M. Borowik, R. Wazirali, C. Napoli, G. Pap-
palardo, and E. Tramontana, “Benchmark tests on improved merge for
big data processing,” in Asia-Pacific Conference on Computer Aided
System Engineering — APCASE’2015. 14-16 July, Quito, Ecuador:
IEEE, 2015, pp. 96-101, DOI: 10.1109/APCASE.2015.24.

M. Wozniak, Z. Marszatek, M. Gabryel, and R. K. Nowicki, “Prepro-
cessing large data sets by the use of quick sort algorithm,” Advances
in Intelligent Systems and Computing: Knowledge, Information and
Creativity Support Systems: Recent Trends, Advances and Solutions -
KICSS’2013, vol. 364, pp. 111-121, 2015, DOI: 10.1007/978-3-319-
19090-7_9.

M. Wozniak, Z. Marszatek, M. Gabryel, and R. K. Nowicki, “Modified
merge sort algorithm for large scale data sets,” Lecture Notes in
Artificial Intelligence - ICAISC’2013, vol. 7895, pp. 612-622, 2013,
DOI: 10.1007/978-3-642-38610-7_56.

M. Wozniak, D. Potap, R. K. Nowicki, C. Napoli, G. Pappalardo, and
E. Tramontana, “Novel approach toward medical signals classifier,” in
IEEE IJCNN 2015 - 2015 IEEE International Joint Conference on
Neural Networks, Proceedings. 12-17 July, Killarney, Ireland: IEEE,
2015, pp. 1924-1930, DOI: 10.1109/IICNN.2015.7280556.

START

Download
file name.

Create array<bool>
Atab = gcnew
array<bool>(100);

i<max?

YES

tab[i]=true;

NO—»

Inti=2;

i<max?

Q

YES

’

YES

j=2%i

j<max?

YES
tab[j]=false;
j+=i;

NO—— b

List<int>"a = gcnew
List<int>();

Inti=2;

YES

YES

v

a->Add(i)

NO—— >

array<int> Ac = gcnew
array<int>(a->Count)

Figure 11. Block Diagram of the Program ’Nested loops’

33

Int i=0;

YES
v

clil=ali]

i++;

STOP

int j=0;

) —
j<e->L

<>
v

6

YES STOP

int k=0;

@

YES
Y

Int 1=0;
|

I<c->Length?

YES
A 4

Int m=0;

c->Length

<

Print to file.

NO

3
+
+

T
+

=~
T
+

Figure 12. Example of loops for 4-elements combinations.

34

