
GitHubAnalyser: a Tool Detecting Class
Correlations on Git Repositories

Gaetano Cammariere, Massimiliano Portelli, Placido Russo
Department of Mathematics and Informatics

University of Catania
Catania, Italy

Email: gaetano.cammariere@outlook.it, massimiliano.portelli@gmail.com, russo.placido@gmail.com

Abstract—We have realised a tool, dubbed GitHubAnalyser,
performing data mining and analysis of GitHub repositories
in order to gain several statistics on Java classes. The sought
statistics aim at highlighting the correlation between classes,
detected from the simultaneous occurrence of changes on a
repository. The tool has been developed using MetricMiner2,
a Java mining library, and MrJob that uses Python with the
MapReduce model to compute data analysis in a distributed and
parallel manner.

I. INTRODUCTION

The proposed GitHubAnalyser tool aims at helping develop-
ers to extract three statistics from a Java code repository: (i) the
strongly related classes that happen to be modified at the same
time, (ii) how many times most of the classes (percentage)
were modified together, and (iii) for each class how often
has been modified with any other class. Such metrics provide
developers with a representation of the software system and
can point them to further analysis aiming at improving the
modularity of the system, e.g. by means of refactoring metrics
and tools [1]–[9].

GitHub is a hosting service for source code based on Git, a
version control system for software projects. It simplifies the
code sharing and collaboration among projects. The fundamen-
tal unit of a repository is the commit, a set of related changes in
a repository from which it is possible to derive representation
of code state at a given moment in the time. To mine data from
a repository we use the Java framework MetricMiner 2 [10]
that helps developers with the mining of software repositories.
Using this framework we are able to extract some information
about commit like date and time of push, author, modified files
and the differences among the states of each file.

Since the computation of the statistics becomes expensive
with the increasing of the quantity of code to analyse, compu-
tation can be executed in a distributed manner using Hadoop,
an Apache framework inspired to MapReduce for the support
to distributed applications with high access to data [11], [12].
To use all the advantages of the Python language, we use the
MrJob toolkit that helps to develop Hadoop programs and test
them locally.

Finally, with GnuPlot [13], the data obtained from the
computation are visualised in human readable graphs.

Copyright c© 2016 held by the authors.

II. GATHERED STATISTICS

Through the analysis of a repository, the proposed tool is
able to produce as output three statistics which help the devel-
opers with their job. The parameters needed for each statistic
can be configured in a specific setting file, “settings.ini”, which
contains all the necessary parameters for the execution of the
tool. The full list of parameters is specified in the section II-A.
The three statistics are explained below.

The first statistic produces as output a file, “output1.tsv”,
having the list of the modified classes during a given time
range, together with the information of date and time of their
commit. The temporal range is set through two parameters
which correspond to the two temporal instants that are the
limits of the range. The parameters in the file “settings.ini”
are first statistic time inf and first statistic time inf, in the
format dd/mm/yyyy − hh : mm.

The second statistic produces as output a file, “output2.tsv”,
having the percentage of modified classes for each commit,
given as a percentage of minimum threshold. The modified
classes are the classes that have been modified in the same
commit, at the same time, and the percentage is relative to
the total of classes present in that temporal instant in the
repository. The threshold is used to show only the commit
whose percentage is above the threshold. The threshold pa-
rameter need to set in the file “settings.ini” as parameter
second statistic perc.

The third statistic produces as output file “output3.tsv”,
having the classes matrix with their frequency of changes.
I.e. for each class in the repository, it shows the number
of times that it has been modified together with another
class. This statistic has no input setting parameter, however
two parameters are later used for the visualisation of relative
graphs, because the repository could be very large, with many
classes.

A. Useful Settings

The tool configuration is given according to the file
“settings.ini” that allows the setting of input parameters in
the form “key=value”. The list of parameters is as follow.

1) repository path: the location, a local folder or a
http/https address, of the repository;

2) branch name: the branch name of the repository to
analyse. The default value is “master” and is also pos-

35



sible to choose more than one branch name to analyse
by separating names by a comma;

3) first statistic time inf : the lower limit used in the first
statistic. The format is dd/mm/yyyy − hh : mm;

4) first statistic time sup: the upper limit used in the first
statistic. The format is dd/mm/yyyy − hh : mm;

5) second statistic perc: the percentage threshold used in
the second statistic. The default value is “0” to show all
the modified classes in the commits;

6) third statistic n classes: the number n of graphs to
display for the third statistic. Accordingly only the most
expressive n classes will be shown in the graph. The
default n value is “10”;

7) third statistic threshold: the modifications threshold
used to display the graphs for the third statistic. It allows
us to discard the classes whose number of modifications
is under the threshold. The default value is “5”.

III. BASIC CONCEPTS FOR PROCESSING REPOSITORIES

The development of the proposed tool involved several
programming languages combined together in a pipeline with
a bash script. Figure 1 shows the essential flow of execution.
For the mining of repository we use a Java program, based
on the Java MetricMiner library, whereas for computing the
statistics we use Python, with MrJob toolkit and a Gnuplot
script for the visualisation of the results.

A. Mining and pre-processing in Java

The first phase consists of the download of the Java repos-
itory and the analysis of the metadata provided by GitHub.
Because MetricMiner2 needs a local copy of the repository,
before the preprocessing we need to clone the online reposi-
tory. This is obtained using the ”JGit” library that clones the
source code using the Git API.

Using the GitHub’s metadata we can find the line and the
name of the file that contains a modification, and then all
the modified classes in that file. MetricMiner2 analyses the
repository’s metadata subdividing them by commit. For each
commit we obtain the timestamp and a list of “Modification”.
Every “Modification” represents a single file of the project
with the updated source code and other information like the
added rows and the removed rows. MetricMiner2 builds a tree
where a single node represents a Java class with the relative
methods. The Java parser inside MetricMiner2 gives the line
number of the beginning of a class and we also calculate the
line number of its end. With these limits for each class and the
line numbers of modified rows derived from a “Modification”,
we can find the classes that contain at least one modification.

With a single commit, we can obtain only the information
about the modifications compared to the previous commit.
On account of this, we need to create two maps key/value,
respectively, the analysed actual commit and the previous
commit. With the two maps we can get all the information
about the state of the repository during the project lifecycle.
The map contains the information related to the commit with
all the Java file in the repository, where the key is the path of

Fig. 1. GitHubAnalyser workflow

the file and the value is the list of classes in the file with a 0 or
1 if the class was modified in the commit or not. The analysis
starts from the first commit in the repository in time order
with the structure that will be filled with the list of modified
classes.

The final result of the preprocessing will be the entire
history of the repository’s lifecycle subdivided by commit
where for every commit we will have its timestamp, all the
classes for the timestamp and if some classes are modified a
0 or 1 for each one. These data will be aggregated in a file
called “commitsLog.tsv” and they will be processed in the
next phase.

The pre-processing produces another output files called
“classesList.txt” that contains the list of all class presents in
the repository from the initial creation to the last commit. This
file is represented in Figure 2.

During the pre-processing some borderline cases are en-
countered and addressed, as follows.

• If the commits have more than 200 modified files, Met-
ricMiner2 cannot process it and then throws an exception

36



Fig. 2. Graphic representation of a map

and discards the file from the analysis.
• If a single difference file for a single Java file is longer

than a threshold (set by MetricMiner2 as 10000 charac-
ters) the file content is replaced by a string “TOO BIG”
and then the modification cannot be analysed. For this
case we choose to consider all the classes in the file
modified.

GitHub also presents some limitation in difference files
(diff):

• a diff file cannot have more than 1500 lines or more than
100 KB of raw data

• the maximum number of files in a single diff is 300
• the total size of diff file in all files of a view cannot

exceed 10000 lines or 1 MB.
By means of the said Java based pre-processing we can

obtain data from the repository that we will use in the Python
distributed processing. The data obtained are aggregated in
two files:

• commitsLog.tsv that contains the history of the repository
subdivided by commit with the relative timestamp, the
relative classes and for each class a zero or a one if it
has been modified.

• classesList.txt that contains the list of all classes present
in the repository starting from its creation.

B. Computing Statistics

After the data have been extracted from a GitHub repository,
they are processed in order to have statistics about the changes
made to the source code, specifically on changes to Java
classes.

Three Python scripts obtain three statistics. The structure
of each script is represented by the implementation of a class
derived from MrJob, with two methods inside: mapper and
reducer. These methods are essential in order to define the
behaviour according to the paradigm of MapReduce.

Below is the implementation logic of the two methods
described for each statistic:

1) mapper: it creates a map that has as a key the “times-
tamp” of a commit and as value the “name” of a class
that has been modified in the commit;
reducer: it returns the pairs “date” of the commit, “list”
of classes changed in the commit;

2) mapper: it creates a map that has as key the “timestamp”
of a commit and as value the “name” of a class present

in the source code at the time of the commit, along with
a “binary value” indicating whether the class changed in
the commit;
reducer: it returns the pairs “date” of the commit,
“percentage” of classes modified in the commit, along
with the “list” of changed classes;

3) mapper: given a reference class (which will be one of
the class of the repository), it gives as key the “name”
of a class modified in the same commit as the reference
class and as value “1”;
reducer: it returns the pairs “name” of a class, “number”
of times that the class has been modified along with that
of reference.

The three scripts produce three output files, called “out-
put1.tsv”, “output2.tsv” and “output3.tsv”, calculated for the
three statistics.

Since the third statistic produces output in a file for each
class containing the rate of change of classes compared to
the analysed class, another Python script generates a square
matrix having rows and columns for the names of all classes
present in the repository. Each cell (i, j) indicates the number
of times that the i− th class has been changed simultaneously
with the j − th class.

This matrix is further processed by another Python script to
create two other output files (“filtered classes matrix.tsv” and
“most modified list.txt”), which respectively contain the array
of classes sorted in accordance with a minimum frequency
threshold and the list of classes modified the most.

The statistical processing is structured to take place in a
parallel manner and distributed by using MrJob. In fact the
whole calculation was made to run on multiple machines, after
proper configuration of a Hadoop cluster.

C. Results visualisation

The result of the calculation of the three statistics is a set of
output files in tsv format, tab-separated value, that summarise
the results of the tool. Furthermore, some graphs are produced
to facilitate the user understand the results. This is the list of
files produced:

• output1.tsv: it refers to the first statistic and shows the
time and date for each commit in the temporal range
selected and the list of modified classes during this
commits.

• output2.tsv: it refers to the second statistic and shows the
commits that the percentage of modified classes is over
the input threshold. For each of this commits, identified
by time and date, it shows the percentage of modified
classes and the list of this classes.

• output3.tsv: it refers to the third statistics and shows the
table of all the classes of the repository. Each position
(x, y) represent how many times the classes x and y have
been modified together.

• filtered classes matrix.tsv: it is a table of filtered classes
that shows only the significant values of the output3.tsv
file. The significance is given by the values that are over
the input threshold set in the settings file.

37



• most modified list.txt: it is the list of n most modified
classes in the repository, with n value sets in the settings
file.

Finally, the execution of the graphs.sh script produces this
three sets of graphs:

• A graph that shows, only for the commits that exceeds
the percentage of modification set in the settings file, the
percentage of modified classes compared to the total of
classes present in that commit in that temporal instant.

• A set of n graphs, n set in the settings file, that show
the frequencies of modifications associated to the first n
classes for number of total modification.

• A heat map that shows the number of concurrent mod-
ifications for classes, filtered by a specific value in the
settings file.

Figure 3 shows the results of the analysis of the wavefron-
tHQ/java repository [14], a repository chosen for testing phase.

Fig. 3. Graphs produced by the analysis of wavefrontHQ/java repository. The
left top graph is the result of the second statistic. The left bottom graph is the
result, the heat map, of the third statistic. The other graphs are the 10 most
modified classes of the repository.

IV. TESTING

For the testing phase we used a machine with the following
hardware configuration:

• CPU: Intel Core i7-4510U @ 2.00GHz x 4
• RAM: 8GB
• OS: Ubuntu 16.04 64-bit
The repositories of Java code chosen for testing are listed

in Table I.
The results obtained from the analysis of the repository,

about the execution time of the tool and the total number
of classes to each repository are summarised in the graph of
Figure 4.

For a better understanding of the results that the tool
produces, we have prepared some graphs that show the results
produced during the testing phase of the repository wavefron-
tHQ/java.

Fig. 4. Graph with the execution times in relation to the total number of
classes of each repository analysed.

Fig. 5. Graph relating to the history of commits of the repository wavefron-
tHQ/java.

Figure 5 shows the time history of the commits of the
repository that exceeds a threshold percentage of the classes
modified for each commit, in this case the threshold is set
to 0%. The graph shows that after the first modification of
100% of the classes, which corresponds to the first upload
of classes in the repository, the repository has been changed
to 40% of classes on one occasion during a commit dated
November 2015 and it has not been modified for more than
20% from that moment forward.

Figure 6 shows that the class “GraphiteDecoder”, edited
nine times during the commits to the repository, is strongly
correlated to the class “OpenTSDBDecoder” which has been
changed as often as the first was changed. In addition, there is
a correlation, a little less strong, with classes “AbstractAgent”
and “PushAgent”, and gradually more and more weak corre-
lations with other classes. This type of chart is shown for the
first classes based on the number of changes of the repository.

Figure 7 gives a heatmap for modified classes in relation to
other classes. For a better visualisation, only a subset of classes

38



Repository Number of commits Last commit date Number of classes Execution time
wavefrontHQ/java [14] 181 13.65 80 10.430s
java-design-patterns [15] 1322 92.50 1029 555.537s
okhttp [16] 2535 33.33 583 462.374s
RxJava [17] 4715 8.99 2059 7189.825s

TABLE I
ANALYSED REPOSITORIES STATS.

Fig. 6. Graph of the class “GraphiteDecoder” in the repository wavefrontHQ/java.

Fig. 7. Heatmap of the number of classes modifications in the repository
wavefrontHQ/java.

has been shown for which the number of changes exceeds a
certain threshold. The values on the diagonal represent the
number of overall changes of the class and the values in the

corresponding row (or column equivalently) are the number
of changes of the other classes in the commits in which the
first class has been modified. E.g. the row, or column, for
class “AbstractAgent” let us see that it has been changed 35
times (color yellow) and along with it the class “PushAgent”
was changed about 20 times (color close to red), while all
other classes have been changed a number less than 10 times
(colours from violet to black).

V. CONCLUSION

This paper has described the development of a tool that
taps into GitHub repositories and extracts from them some
relevant statistics for the commits of a system classes. The
statistics, indeed, allow us to gain an insight into the software
system, such as the classes strongly related to each other, since
they were modified at the same time, most of times; and how
many times the repository has been modified, by significant
modifications, for the most part of code.

This work can be considered a preliminary, but essential,
step towards developing further useful metrics, describing the
work of the developers, or suggesting developers which parts
of the system could be improved by means e.g. of refactoring
techniques.

39



REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[2] J. Kerievsky, Refactoring to patterns. Addison-Wesley, 2005.
[3] R. Giunta, G. Pappalardo, and E. Tramontana, “Superimposing roles

for design patterns into application classes by means of aspects,” in
Proceedings of ACM Symposium on Applied Computing (SAC). Riva
del Garda, Italy: ACM, March 2012, pp. 1866–1868.

[4] C. Napoli, G. Pappalardo, and E. Tramontana, “Using modularity metrics
to assist move method refactoring of large systems,” in Complex,
Intelligent, and Software Intensive Systems (CISIS), 2013 Seventh In-
ternational Conference on. IEEE, 2013, pp. 529–534.

[5] R. Giunta, G. Pappalardo, and E. Tramontana, “Aspects and annotations
for controlling the roles application classes play for design patterns,”
in Proceedings of IEEE Asia Pacific Software Engineering Conference
(APSEC), Ho Chi Minh, Vietnam, December 2011, pp. 306–314.

[6] A. Calvagna and E. Tramontana, “Delivering dependable reusable com-
ponents by expressing and enforcing design decisions,” in Proceedings
of IEEE Computer Software and Applications Conference (COMPSAC)
Workshop QUORS, Kyoto, Japan, July 2013, pp. 493–498.

[7] R. Giunta, G. Pappalardo, and E. Tramontana, “Using Aspects and
Annotations to Separate Application Code from Design Patterns,” in
Proceedings of Symposium on Applied Computing (SAC). ACM, 2010,
pp. 2183–2189.

[8] S. Cicciarella, C. Napoli, and E. Tramontana, “Searching design patterns
fast by using tree traversals,” International Journal of Electronics and
Telecommunications, vol. 61, no. 4, pp. 321–326, 2015.

[9] E. Tramontana, “A design pattern for improving the performances of
a distributed access control mechanism,” in Proceedings of AsianPlop,
Taipei, Taiwan, February 2016.

[10] F. Sokol, M. Zigmund, F. Aniche, and M. Gerosa, “Metricminer: Sup-
porting researchers in mining software repositories,” in IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM), 2013.

[11] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[12] C. Napoli, E. Tramontana, and G. Verga, “Extracting location names
from unstructured italian texts using grammar rules and mapreduce,”
in Proceedings of the International Conference on Information and
Software Technologies (ICIST), 2016, pp. 593–601.

[13] T. Williams and L. Hecking, “Gnuplot,” 2003.
[14] “Wavefront,” 2016. [Online]. Available: https://github.com/

wavefrontHQ/java
[15] I. Seppala, 2016. [Online]. Available: https://github.com/iluwatar/

java-design-patterns
[16] “Square,” 2016. [Online]. Available: https://github.com/square/okhttp
[17] “Reactivex,” 2016. [Online]. Available: https://github.com/ReactiveX/

RxJava

40

https://github.com/wavefrontHQ/java
https://github.com/wavefrontHQ/java
https://github.com/iluwatar/java-design-patterns
https://github.com/iluwatar/java-design-patterns
https://github.com/square/okhttp
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava

	Introduction
	Gathered Statistics
	Useful Settings

	Basic Concepts for Processing Repositories
	Mining and pre-processing in Java
	Computing Statistics
	Results visualisation

	Testing
	Conclusion
	References

