
Linked Data processing for Embedded Devices

Anh Le-Tuan

INSIGHT Centre for Data Analytics
National University of Ireland, Galway.

1 Problem Statement

An important goal of pervasive computing or the Internet of things(IOTs) is the
enabling of smart services and applications that proactively adapt to the context
of users and surrounding environments [20, 15]. In principle, these systems con-
sist of embedded and networked computing devices that can automatically detect
context and make an appropriate adaptation. However, allowing autonomous de-
tect of context on the devices is difficult. Data from sensors should be collected
to produce machine readable situational awareness data that allows for the in-
telligent response. There are many challenges in representing, integrating and
reasoning on volatile and diverse data.

Linked Data provides a promising solution to these difficulties. RDF is a well
established data model to describe the semantics of real data [3]. As well as al-
lowing a flexible way of integrating heterogeneous data, and RDF ontology-based
context description enables better reasoning and a better sharing contextual in-
formation [22].

While many embedded devices have enough computing resources and storage
for processing RDF data locally, this is still a challenging task. The existing
RDF libraries for embedded devices are limited in functionality, and the RDF
frameworks for PC-based workstations suffer performance issues running on such
devices. Our work aims to a comprehensive, scalable and resourced-awareness
software framework to process RDF data for embedded devices.

In this thesis, we introduce a system architecture that support RDF storage,
SPARQL Query, RDF reasoning and continuous query for RDF stream on em-
bedded devices. To achieve the efficient performance and scalability, we propose
data management techniques that adapt to hardware characteristics of embed-
ded devices. Computing resources on embedded devices are constrained, their
usage should be context-dependent. Therefore, we work on an adaptation model
that supports trading off system performance and device resources depending on
their availability. The model is based on the cost model of the data management
techniques.

2 Relevancy

On a powerful server, Linked Data can be efficiently processed with existing RDF
frameworks such as Sesame [5] or Jena [23]. In many context-aware systems [16],
raw data from connected devices is sent to a server from which contextual in-
formation is created, stored and queried. However, due to the distributed char-
acteristic of pervasive and IOT environments, the centralised architecture is a

2 Anh Le-Tuan

weak point. In such environments, it is provisioned that devices, physical objects
are autonomous, independent, interoperable and easily added or removed [19, 7].

Executing the data processing tasks locally on embedded devices might re-
quire much more efforts in optimising the computations or in handling limited
resources. However, devices can be self-contained and be able to operate in dif-
ferent environments. Furthermore, data transmission costs can be dramatically
reduced as it does not require the transfer of data from a device to a server.
Working independently from a remote server also avoids the requirement for de-
vices to maintain a frequent connection. Thus, the risks caused by intermittent
connectivity can be reduced. As device data is not stored and processed on a
remote server, the privacy and security concern is also reduced. Finally, by dis-
tributing that computation among a large number of existing devices, a greater
computational scale can be achieved.

3 Related works

There have been several works that try to ship RDF data processing to embed-
ded devices. Mobile RDF 1 is a lightweight RDF framework that is suitable for
Java Me. This library allows simple APIs such as creating, parsing and serialising
RDF data, but RDF graph modifications are not supported. Micro-Jena 2 is an
early adoption of Jena to J2ME that is specifically developed for Symbian OS.
However,it only provides in-memory processing. AndroJena 3 is another adop-
tion of Jena that offers all functionalities as original Jena framework. However,
ignoring the fact that RDF data processing cannot be directly applied to the
mobile setting, Androjena has scalability issue due to memory limitation of mo-
bile devices (as shown in our experiment). Wiselib tuplestore [8] is a notable
work that is recently introduced. Attempting to tackle the resource constraint,
the authors tried to reduce code size and build a database tailored to embedded
devices. However, this library does not include SPARQL processor or inferencing
engine.

In the response to these dependencies, an initial RDF storage solution and
SPARQL query processor for android devices, RDF on the Go has been de-
veloped [14]. To overcome the memory limitation of Android, this work uses
a lightweight version of Berkeley DB 4 to store data in the secondary storage.
However, its performance is inefficient due to the slow read operation and write
operation of Berkeley DB. In a better developed version [13], we provide an
Android native RDF storage to adapt to the characteristic of Android devices.

4 Research questions

Considering the limitations identified in previous sections, the main goal of the
research is to enable a scalable and resource-efficient framework for processing
Linked Data on embedded devices. To achieve the research goal, we address the
following research questions:

1 http://www.hedenus.de/rdf/
2 http://poseidon.ws.dei.polimi.it/ca/?page id=59
3 https://github.com/lencinhaus/androjena
4 http://www.oracle.com/technetwork/ database/berkeleydb/overview/index.html

Linked Data processing for Embedded Devices 3

Embedded devices are memory-constrained. If main memory is used without
awareness of the limitation, embedded systems face high risk of crashing due
to out-of-memory. The existing pc-based implementations, such as Sesame or
Jena, tend to use GBs main memory as high speed buffer for data processing.
Our experiments show that Sesame, Jena and its ported version for AndoJena
suffer in scalability issues due the memory limitation of devices. Therefore, our
first research question(RQ1) is how to enable a greater scale of RDF data for
memory-constrained devices.

Since memory is limited on embedded devices, and out-of-memory errors
crash applications, data may be frequently written and read from secondary
storage. Embedded devices use flash memory as secondary storage. Data struc-
tures and indexing schemes for traditional magnetic disk work inefficiently on
flash-based storage due to the differences in physical data management between
these two types of memory medium [2, 10]. As in the initial version of RDF on
the go [14], Berkeley DB could adapt to the low memory environment, how-
ever, it writes and read RDF data very slowly. Hence, the second research ques-
tion(RQ2) is how RDF data can be organised so that it may be efficiently ac-
cessed on flash-based storage of embedded devices. To the best of our knowledge,
this question currently has no attention.

Resource availability on embedded devices is hard to predict. For example,
there may be several background services running to collect data, or connec-
tion bandwidth changes due to changing place. Therefore, resource consumption
should be context dependent and may change according to need. For example,
on battery-powered devices, optimising energy consumption to keep devices alive
should be in a high priority. Hence, how to adapt the optimisations in (RQ1)
and (RQ2) to available resources on embedded devices is consequently our third
research question(RQ3).

5 Hypotheses

In this section, we present our provisional hypotheses. We expect that more will
become apparent as this research matures:

H1: A great scale of RDF data can be achieved on embedded devices by
compressing RDF nodes to reduce the memory consumption and use the sec-
ondary storage as extended buffer.

H2: RDF data can be read and written from/to store efficiently if its physical
organisation is applicable to the I/O behaviours of physical storage [9, 18].

H3: Defining the cost models of each resources for the system, the resources
consumption can be determined. According to the cost models, resources con-
sumption can be traded-off depending on their availability.

6 Approach

Our research goal is to improve the scalability and the resources efficiency of
RDF data processing for embedded devices. This concern is related to database
management’s system performance that is strongly impacted by the character-
istic of hardware resources [1]. Our approach is to adapt embedded database
management to manipulate RDF data. The next two subsections summarise

4 Anh Le-Tuan

our system overview the adaptation and appropriate database techniques for
embedded hardware.

6.1 System Overview

Follow the recommendations of designing embedded database [17], the system is
designed as functionalities customisable. That means the applications can chose
and include only the required features. To reduce the memory consumption of
RDF data, we propose using RDF encoding(H1). This compression technique
is commonly used in many triple stores [23, 5]. The system includes a shrinking
buffer to claim free memory(H1) when need. In secondary storage, we use data
structure and indexing techniques supporting high throughput to trade off the
I/O asymmetry of flash-based storage(H2). To trade off resource consumption,
optimising execution plans is offered by an Execution Engine(H3).

Encoder

Physical Storage

Buffer Manager

Execution Engine

Decoder

Reasoner

Continuos Query
Processor

SPARQL Query
Processor

D
ic

ti
o
n
a
ry

Fig. 1. Architecture

As illustrated in Figure 1, the overall architecture consists of building blocks,
each block describes a system’s component. An Encoder, a Decoder along with
a Dictionary are responsible for compressing and decompressing RDF nodes.
The Execution Engine employs execution plans and provides RDF graph APIs.
So that, the functionalities components such as Continuous Query Processor,
SPARQL Query Processor, Reasoner can manipulate RDF data through the
standard RDF graph APIs. In the physical layer, a Buffer Manager is tightly
coupled with a Physical Storage to manage in-memory data and persistent
data.

6.2 Adaptation techniques

The hardware characteristics of embedded devices that significantly influence
systems performance of a database management system are the limitation of
main memory and the novel I/O behaviours of flash-based storage. In following,
we propose database techniques to adapt RDF processing data to such hardware
environment(RQ1, RQ2).

Using RDF encoding, RDF nodes are transformed into 32-bit length integers.
Most of the operations of RDF nodes, such as matching during a query execution,

Linked Data processing for Embedded Devices 5

can be performed in the compressed form. Only encoded integers are cached in
main while their string representations are kept on flash storage. When it is
needed, the Decoder will return the original form. To reduce space required to
store the strings, prefix mapping techniques and Huffman coding [21] are also
applied.

Data is read and written from flash-based storage in fixed size memory blocks.
Hence, the Buffer Manager and the Physical Storage organise data in memory
blocks of the same size. To avoid out-of-memory errors, the Buffer Manager
writes data to storage to claim free memory. The storage I/O is much slower
than other operations in the system. Therefore, the number of reads and writes
must be reduced as much as possible. In the Buffer Manager, a score is assigned
to each block to detect its access frequency. From the score, the Buffer Manager
chooses and writes the block with the lowest score to the storage and keeps the
more active block in main memory. To manage the intermediated data from
joins, we also use indexes on bags of mapping [12] to optimise buffer size.

On flash-based storage, reading is much faster than writing because it has no
mechanical seek latency. Overwriting in flash memory is significant slow due to
the erase-before-write limitation [10]. To trade off flash I/O asymmetry, to fasten
deallocating data, to support intensive inserting RDF triples, we try to optimise
the write operation of the Physical Storage. Therefore, we use a two-layers index
to manage persistent data. In a file, tuples are sorted lexicographically and are
compressed into fixed-size blocks. The spare index holds the positions of data
blocks in the system files, and it is small enough to fit into main memory. Each
block is identified by its lowest tuple and its highest tuple. Free space is always
left in each data block to insert new tuples. Thus, it only has to update the
modified data block instead of resorting the whole file that may require many
rewriting operations. When a block is split for new space, the updated part will
be copied into a new block and is assigned as the last data block of the file. The
old block remains the same, but the sparse index is updated with its new lowest
tuple and highest tuple. This block is updated later when a new tuple arrives. It
might waste space since data blocks in a file are not entirely full, however, this
is a standard strategy (also on non-Flash storage) to trade space efficiency with
performance.

7 Evaluation plan & Preliminary Results

To test our approaches, we compare the scalability of our system to other systems
that could run on the same devices(H1, H2). The scalability means that the size
of RDF dataset that the system can support and answer queries in an acceptable
delay. Furthermore, we plan to simulate scenarios of changing resources to test
the resource consumption adaptation model(H3).

The following is our experimental results of our current work’s stage. The
experiment evaluates the updating throughput and scalability of RDF storage,
the response time of SPARQL queries processor and the ability of processing
continuous queries. As we have found LUBM’s dataset and queries are not ap-
plicable to evaluate reasoners on small devices [6], the evaluation on reasoner is
currently future work.

6 Anh Le-Tuan

To set up the evaluation, we implement a testing prototype in Java. On top of
that, we integrate the SPARQL query processor of Jena [23] and the version for
embedded devices of CQELS [11]. We use generated data and SPARQL queries
from BSBM benchmark [4] to test the RDF storage and the SPARQL processor.
The throughput test is a simulation of data growing process by gradually adding
more data. The response time of queries is measured on the same dataset that all
engines can support. On a BeagleBone Black 5, we compare our implementation
RDF 3B with Jena and Sesame. And on an Android tablet Nexus 7 6, we compare
our RDF-OTG with AndroJena and RDF-BDB, which uses Berkeley DB for
RDF storage.

200,000 400,000 600,000 800,000

500

1,000

1,500

2,000

2,500

3,000

3,500

Number of triples

Ops
RDF 3B
JenaTDB
Sesame

Comparison update throughput with Jena and Sesame on
Beagle Bone Black

1

200,000 400,000 600,000 800,000

500

1,000

1,500

2,000

2,500

3,000

3,500

Number of triples

Ops
RDF-OTG
TDBoid

RDF-BDB

Comparison update throughput with TDBoid and RDF-BDB
on Nexus tablet 7

1

Fig. 2. Update throughput

The throughput tests results are illustrated in Figure 2 2. On the Beagle-
Bone, the native store of Sesame and JenaTDB can load 500k triples and 600k
triples. The tests stopped due to out-of-memory errors. Our engine, RDF 3B, can
insert more than 1 million triples with higher throughput. The update through-
put reaches a peak of 3000 operations per second(Ops) and remains stable at
1000 Ops. On the tablet, our system RDF-OTG also shows greater efficiency
in inserting rate and scale. The directly ported version of Jena, the TDBoid
crashed after inserting 200k triples. With the shrinkable mechanism of Berkeley
DB, RDF-BDB does not run out of memory. However, its inserting rate is very
low (10-20 Ops). Thus, we show PC-based implementations work inefficiently on
embedded devices due to the memory constraint. The B++ Tre indexing tech-
nique (of Berkeley BD) may work efficiently on magnetic disk, but it is inefficient
for flash-based storage

The figure 3 reports the response time of SPARQL queries on respectively
500k triples on the BeagleBone and 200k on the tablet. Jena and Sesame answer
these queries with different delays. For example, Sesame answers query 5 faster
than JenaTDB, but it responds more slowly in query 11. On the tablet, the
performance of RDF-BDB is much slower than RDF-OTG and TDBoid due to
the latency in Berkeley DB. For example, it can not answer query 1 and query 5

5 https://beagleboard.org/black
6 https://en.wikipedia.org/wiki/Nexus 7 (2012)

Linked Data processing for Embedded Devices 7

less than 20 seconds. Overall, in our test, our framework can answer all SPARQL
queries less than 4 seconds on the BeagleBone Black and 16 seconds on the
tablet. However, as we reuse the SPARQL processor of Jena, our implementations
perform slightly better than Jena because it can access RDF data on flash faster.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10 Q11
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
im

e
(s
ec
on

d
)

RDF 3B
JenaTDB
Sesame

Comparison query response time with Jena and Sesame on
Beagle Bone Black

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10 Q11
0

2

4

6

8

10

12

14

16

18

20

T
im

e
(s
ec
on

d
)

RDF-OTG
TDBoid

RDF-BDB

Comparison query response time with TDBoid and
RDF-BDB on tablet Nexus 7

1

Fig. 3. Query response time

We test the continuous query processor in the scenario of event process-
ing [12]. It can process an average of 50 events per second on the Beagle Bone
Black. The memory profiling shows that for the same size of data, our testing
applications consume one-third memory as Jena does and a half as much as
Sesame requires.

8 Reflections

This work aims to adapt embedded database management for efficient process-
ing RDF data on embedded devices. This work is based on the understanding
of database management techniques and embedded devices’ architecture and
RDF data processing. Our initial results promisingly show that database op-
timisations can support better scalability and performance for RDF data on
embedded devices.

From the experiment results, we have found interesting opportunities to im-
prove our system. For example, in the SPARQL query processor, the algorithm
of Sesame can be applied to execute query 5, and in query 11 we use Jena’s. Fur-
thermore, a scalable reasoner can be achieved by leverage the high throughput
storage to store the materialised triples which are derived from forwarding rules.
It can be assumed that using a persistent triple storage to store derived triples
will reduce the memory consumption and the cost of re-materialising data. If the
RDF Dictionary on different devices can be efficiently synchronised, the transfer
of RDF data between devices is fastened since only the encoded integer need to
be sent.

Finally, we believe our software framework could support a scalable and
efficient RDF data processing for pervasive and IOTs applications.

Acknowledgement: This thesis is funded by Irish Research Council under
Grants No. GOIPG/2014/917 and supervised by Dr. Danh Le-Phuoc and Dr.
Conor Hayes.

8 Anh Le-Tuan

References

1. A. Ailamaki. Databases and Hardware: The Beginning and Sequel of a Beautiful
Friendship. Proceedings of the VLDB, 2015.

2. D. Ajwani, I. Malinger, U. Meyer, and S. Toledo. Characterizing the performance
of flash memory storage devices and its impact on algorithm design. WEA, 2008.

3. P. Barnaghi, W. Wang, C. Henson, and K. Taylor. Semantics for the internet of
things: Early progress and back to the future. Int. J. Semant. Web Inf. Syst., 2012.

4. C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. International Journal
on Semantic Web and Information Systems, 2001.

5. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame : A generic architecture
for storing and querying rdf and rdf schema. ISWC, 2002.

6. M. D’Aquin, A. Nikolov, and E. Motta. How much semantic data on small devices?
EKAW, 2010.

7. H. Hasemann, A. Kroller, and M. Pagel. RDF provisioning for the internet of
things. International Conference on the Internet of Things, 2012.

8. H. Hasemann, A. Kroller, and M. Pagel. The Wiselib TupleStore : A Modular
RDF Database for the Internet of Things. 2014.

9. Hector Garcia-Molina, J. D. Ullman, and J. Widom. Database systems The Com-
plete Book. 1997.

10. I. Koltsidas and S. D. Viglas. Data management over flash memory. SIGMOD,
2011.

11. D. Le-phuoc. A Native and Adaptive Approach for Linked Stream Data Processing.
PhD thesis, NUI Galway, 2013.

12. D. Le-Phuoc, M. Dao-Tran, A. Le-Tuan, M. Nguyen-Duc, and M. Hauswirth.
Grand Challenge : RDF Stream Processing with CQELS Framework for Real-time
Analysis. DEBS, 2015.

13. D. Le-phuoc, A. Le-tuan, G. Schiele, and M. Hauswirth. Querying Heterogeneous
Personal Information on the Go. ISWC, 2014.

14. D. Le-phuoc, J. X. Parreira, and V. Reynolds. RDF On the Go: An RDF Storage
and Query Processor for Mobile Devices. In ISWC, 2010.

15. D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Internet of things: Vision,
applications and research challenges.

16. M. Miraoui., C. Tadj, and Chokri ben Armar. Architecuture survey of context-
aware system in pervasive computing environment. UbiComp, 2008.

17. A. Nori. Mobile and embedded databases. In SIGMOD, 2007.
18. A. Owens. Using Low Latency Storage to Improve RDF Store Performance. PhD

thesis, University of Southampton, 2011.
19. M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Personal

Communications, 2001.
20. B. Schilit, N. Adams, and R. Want. Context-Aware Computing Applications.

WMCSA, 1994.
21. M. Sharma. Compression Using Huffman Coding. IJCSNS, 2010.
22. T. Strang and C. Linnhoff-Popien. A Context Modeling Survey. UbiComp, 2004.
23. K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds. Efficient RDF storage and

retrieval in Jena2. SWDB, 2003.

