
A DSL for Model Mutation and its Applications
to Different Domains

Pablo Gómez-Abajo

Universidad Autónoma de Madrid, Spain,
Pablo.GomezA@uam.es
http://www.miso.es

Abstract. Model-Driven Engineering (MDE) is a Software Engineering
paradigm that focuses all phases of the software development process in
models. Therefore, the automated manipulation of models is essential in
MDE. While many Domain-Specific Languages (DSLs) exist to specify
model transformation, model simulation, or code generation, there is a
lack of DSLs to specify and apply model mutations. A model mutation is
a kind of model manipulation that creates a set of variants (or mutants)
of a seed model by the application of one or more mutation operators.
Model mutation has many applications (e.g., model transformation test-
ing, automated generation of exercises, verification of software testing,
etc.). The objective of this thesis is the creation of a DSL for model muta-
tion, and its application to different domains like education, model-based
testing and search-based software engineering.

Keywords: Domain-Specific Languages, Model-Driven Engineering, Model
Mutation, Education, Automated Generation of Exercises, Software Test-
ing Verification, Evolutionary Algorithms

1 Problem
Model-Driven Engineering (MDE) [4,19] uses models in all phases of the

software development process. Hence, model manipulation is a key activity in
MDE, for which domain-specific languages (DSLs) particularly tailored to the
transformation task are heavily used [14].

A model mutation is a kind of model manipulation that creates a set of vari-
ants (or mutants) of a seed model by the application of one or more mutation
operators. Model mutation has many applications. For example, in model trans-
formation testing [1], a transformation is represented as a model that is mutated
to evaluate the efficacy of a test set. Such a test set may have been created by mu-
tation of a set of input seed models. In education, a model representing a correct
solution in a domain (like a class diagram, an automaton or an electronic circuit)
is mutated to produce exercises (e.g., consisting in the identification of the errors
injected by the mutations) that can automate the suggested answer [8,18].

There are some frameworks for model mutation, but they are specific for a
language (e.g., logic formulae [11]) or domain (e.g., testing [1,2]); moreover, mu-
tation operators are normally created using general-purpose programming lan-
guages that are not tailored to the definition and production of mutants. Hence,

http://www.miso.es

2 Pablo Gómez-Abajo

there is a lack of proposals facilitating the definition of mutation operators,
applicable to arbitrary languages and applications. These would facilitate the
creation of domain-specific mutation frameworks like the abovementioned ones
by providing: high-level mutation primitives (e.g., for object creation or reference
redirection) together with strategies for their customization; support for compo-
sition of mutation operators; handy integration with external applications (e.g.,
in education, search-based software engineering, model-based testing) through
dedicated post-processors or compilation into a general-purpose language; and
traceability of the applied mutations.

2 Related work
In this section, we review related works on the main line of related research:

the application of mutation techniques to different contexts and domains.
Mutation is used in areas like model-based testing [13], model transformation

testing [1], program testing [6,22], adaptive systems [2], embedded systems [3],
evaluation of clone-detection algorithms [21], generation of large model sets [17],
education [18], or evolutionary algorithms [12,15]. Most of these systems are
built ad-hoc for a specific domain; therefore, a DSL for model mutation that is
domain-independent would be helpful in automating their construction. Next,
we review approaches related to model mutation in different domains.

The mutation framework in [1] is specific to model transformation testing.
It provides a set of predefined mutation operators which are transformation-
specific and are defined with the Kermeta general-purpose model management
language1. As an alternative, a DSL that has mutation-specific primitives, and is
not restricted to the mutation testing domain would be useful. Also for mutation
testing, the language MuDeL [20] provides a description of mutation operators
for grammar-based artefacts, typically programs. The mutation operators in [6]
are specific to testing Android apps. We see again that a DSL for model mutation
with further facilities to combine mutation operators, apply them several times,
and discard mutants that are non-conforming to the meta-model, or duplicated
ones, would facilitate these works. Mutation is also central in some search-based
engineering approaches [10], especially in evolutionary algorithms, where prob-
lems are solved by generating a set of candidate solutions, which is iteratively
improved by applying crossover and mutation operators. Candidate solutions
are usually encoded as bit arrays, though some recent works [15] propose model-
based approaches where the domain is expressed as a meta-model, the candidate
solutions as models, and the mutation operators as model mutators.

3 Proposed solution
To facilitate the specification and creation of model mutations in a meta-

model independent way, we propose a DSL called Wodel. Fig. 1 shows the
architecture of our approach. First, the user provides a set of seed models con-
formant to a meta-model. Then, they use Wodel to define the desired mu-
tation operators and their execution details, like how many mutations of each
1 http://www.kermeta.org/documents/

http://www.kermeta.org/documents/

A DSL for Model Mutation and its Applications to Different Domains 3

type should be applied in each mutant, or their execution order. In addition,
each Wodel program needs to declare the meta-model of the models to mutate,
which can be any meta-model because Wodel is meta-model independent. This
allows type-checking the program to ensure it only refers to valid meta-model
types and properties, and allows checking that the result of the mutation is valid.

seed
models

DSL
meta-
model

 postProc

WODEL
engine

editor (Xtext)

code gen (Xtend)

Java code
model

mutants

code completion, validator

WODEL
program

«conforms»

check

generate, compile, execute

mutation
registry

«refers-to» «refers-to»

Fig. 1: Architecture of Wodel’s environment

Executing a Wodel program produces mutants of the seed models. These
are still valid models (i.e., they conform to the seed models’ meta-model) as this
is checked upon generating each mutant. If the mutant is not conforming to the
meta-model, Wodel iterates the mutant generation until a maximum n number
of times (that can be configured through the preferences page). The produced
Java code, which is in charge of creating the mutants from the seed models as
well as the registry of applied mutations, can be transparently executed from the
Wodel IDE. The registry stores the applied mutations, along with references to
the elements affected by the mutations in the seed model or in the mutants. This
registry generation of the applied mutations is useful when we need to repeat
the mutation process, or we have to generate natural language that describes
the applied mutations. Finally, an optional post-processing step can be used
to generate domain-specific artefacts for particular applications of the mutants.
This will be provided by the Wodel environment through an extension point.
This way, Wodel can also generate mutants in other formats different to EMF
XMI (e.g., json, et.). We plan to extend Wodel to three different applications:
automated generation of exercises; software testing verification; and search-based
software engineering.

We plan to provide Wodel with correct and incorrect mutant generation:
correct mutants are conforming to the same meta-model of the seed model, and
incorrect mutants may violate some of its constraints (e.g., do not satisfy some
association cardinality constraint). This set of correct and incorrect mutants will
be useful in evolutionary computation (e.g., an incorrect mutant may have better
fitness according to a given criterion than a correct one). Wodel will be able

4 Pablo Gómez-Abajo

to distinguish the conforming mutants and the ones that are not conforming to
the meta-model. Also, we will include mechanisms to identify duplicate mutants
not only syntactically, but also semantically. These mechanisms ensure that the
generated mutants will be unique and they are useful in the automated gener-
ation of exercises (e.g., we ensure that the selectable text options, or the set of
diagrams, presented in an exercise correspond to different models), and also in
software testing verification (e.g., we ensure that the mutants of a program to
be verified are behaviourally different).

Wodel will provide mutation primitives: creation, deletion, edge redirection,
cloning, etc.; and also model element selection strategies: random selection, and
property-based selection (e.g., a selection with a fitness function as a property
will be useful in evolutionary algorithms). We also plan to broaden Wodel with
execution policies: parallel, sequential, distributed (e.g., two Wodel programs
can be executed in parallel in different threads at the same time, so they gener-
ate different results which can be merged afterwards). Also, it will be useful to
provide Wodel with libraries of reusable mutations for particular domains (e.g.,
a library of interesting mutations for the automated generation of exercises of
a particular domain). We find it useful to provide Wodel with a registry gen-
eration of the applied mutations (e.g., to reverse a mutation, or for traceability
reasons). It may also be beneficial to extend the mutations registry with addi-
tional behaviour: compacting the registry (e.g., it is irrelevant to store in the
registry two mutations that cancel each other: one mutation creates an object
and another one deletes it). The registry will also be useful for repeatability
(e.g., it will be necessary in evolutionary computation, to be able to repeat the
mutation process). It will be also interesting to extend this registry with some
mechanisms to verbalize the applied mutations (e.g., verbalizing the applied
mutations forward or backward will be useful to explain students how to do or
undo the mutations in the automated generation of exercises, in order to create
the correct answers that fix the mutant; or the wrong ones, that correspond to
alternative mutants).

4 Preliminary work
We have developed an environment which allows the creation of Wodel pro-

grams and their compilation into Java, and can be extended with post-processor
steps for particular applications. Wodel can also generate a registry of the ap-
plied mutations. We also have created the Wodel-Edu extension to Wodel,
an application on the automated generation of test exercises.

Wodel programs have two parts. The first one declares the number of mu-
tants to generate, the output folder, the seed models and their meta-model. The
second part defines mutation operators and how many times they should be
applied. Programs can also include a list of OCL constraints that all generated
mutants should fulfil. Details can be checked in [8]. Listing 1 shows a simple
Wodel program. Line 1 states that we want to generate 3 mutants in folder
out, from the seed model evenBinary.fa. Line 2 indicates the meta-model of the
seed model. These configuration parameters can be omitted, and Wodel will

A DSL for Model Mutation and its Applications to Different Domains 5

take default predefined values. These default predefined values can be configured
in the editor’s preference page. Lines 4–9 define three mutation operators: the
first one (lines 5–6) selects randomly a final state, and makes it non-final; the
second one (line 7) creates a new final state; and the last one (line 8) creates a
new transition from the state selected in line 5 to the one created in line 7.
1 generate 3 mutants in ”out/” from ”evenBinary.fa”
2 metamodel ”http://fa.com”
3
4 with commands {
5 s0 = modify one State where {isFinal = true}
6 with {reverse(isFinal)}
7 s1 = create State with {isFinal = true}
8 t0 = create Transition with {src = s0, tar = s1, symbol = one Symbol}
9 }

Listing 1: A simple Wodel program
Wodel-Edu is an extension to Wodel for the automated generation of

test exercises. It provides four DSLs to configure the text and style of exercises
(eduTest), how model elements should be graphically rendered (modelDraw),
how to represent a model element textually (modelText), and how to repre-
sent an applied mutation textually (mutaText). Wodel-Edu is also domain-
independent and generates a web application with exercises for different domains
(e.g., automata, class diagrams, electronic circuits, etc.). Currently, the gener-
ated exercises are of multiple response, but we plan to extend the framework
to support more dynamic exercises, with a better interaction with the student.
A preliminary evaluation of Wodel-Edu showed good results (the generated
application can be accessed on-line at http://www.wodel.eu).

5 Expected contributions
Wodel will ease the creation of applications based on mutations by provid-

ing support for their definition, execution and traceability. In addition, we will
develop the following three post-processing extensions:
1. Automated generation of exercises that can automate the suggested answer.

This is our framework Wodel-Edu (see Section 4), which will be extended
with gamification features, and interactive exercises.

2. Software testing verification. The source code of a program (represented as a
model) will be mutated via a set of mutation operators. The quality of the
test cases will be evaluated by checking if they detect the generated mutants.
In addition, we will generate a library of Wodel encoded mutations. This
library will apply to any general-purpose programming language.

3. Search-and model-based software engineering. In this approach, population-
based search is used to optimize a problem. Problems are represented with
models, and search is performed by mutating the models in the population.
We can use a similar approach as MOMoT [7] to select the best mutants, but
with the advantage that our language is more flexible to express mutations.

6 Plan for evaluation and validation
We will evaluate the expressivity of Wodel using in this DSL the interesting

mutations both devised by us and found in the literature [9,16,18]. We will

http://www.wodel.eu

6 Pablo Gómez-Abajo

use the test exercises generated with Wodel-Edu in university courses about
automata theory, electronic circuits, and others. We will use the software testing
verification framework with real software projects, with the collaboration of the
industry. We will also use the approach to test ATL model transformations,
complementing the previous work of our group [5]. We will use the search-based
engineering environment with the help of our colleagues of the AIDA2 research
group within our department, who are experts in this area.

7 Current status
We have developed a preliminary version of Wodel which supports 7 types

of mutation primitives and 4 selection strategies, and composite mutations. We
also have included the registry extension to store which mutations have been
applied to each seed model at the mutants’ generation. We have improved the
Wodel DSL with new mutation primitives; conditional expressions for the spe-
cific selection of elements; and also the declaration of blocks inside Wodel
programs, in order to generate mutants at different stages. These improvements
were necessary for applying Wodel to the automated generation of exercises of
the Wodel-Edu framework. Currently, Wodel-Edu supports three kinds of
test exercises: alternative response, multiple diagram choice, and multiple emen-
dation choice. The design and development of Wodel includes the evaluation
of the expressivity of the DSL. The work should be finished by the middle of
2019, as it is shown in Fig. 2.

Fig. 2: PhD. timeline. Total time is 1551 days ' 4 years and 3 months

References
1. Aranega, V., Mottu, J.M., Etien, A., Degueule, T., Baudry, B., Dekeyser, J.L.: To-

wards an automation of the mutation analysis dedicated to model transformation.
Softw. Test. Verif. Reliab. 25(5-7), 653–683 (Aug 2015)

2. Bartel, A., Baudry, B., Munoz, F., Klein, J., Mouelhi, T., Traon, Y.L.: Model driven
mutation applied to adaptative systems testing. In: Software Testing, Verification
and Validation Workshops (ICSTW), 2011 IEEE Fourth International Conference
on. pp. 408–413 (March 2011)

3. Bombieri, N., Fummi, F., Guarnieri, V., Pravadelli, G.: Testbench qualification of
systemc tlm protocols through mutation analysis. IEEE Trans. Comput. (2014)

2 http://aida.ii.uam.es/

http://aida.ii.uam.es/

A DSL for Model Mutation and its Applications to Different Domains 7

4. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool, USA (2012)

5. Cuadrado, J.S., Guerra, E., d. Lara, J.: Uncovering errors in atl model transforma-
tions using static analysis and constraint solving. In: 2014 IEEE 25th International
Symposium on Software Reliability Engineering. pp. 34–44 (Nov 2014)

6. Deng, L., Offutt, J., Ammann, P., Mirzaei, N.: Mutation operators for testing
android apps. Information and Software Technology (2016)

7. Fleck, M., Troya, J., Wimmer, M.: Search-Based Model Transformations with MO-
MoT, pp. 79–87. Springer International Publishing, Cham (2016)

8. Gómez-Abajo, P., Guerra, E., de Lara, J.: Wodel: A domain-specific language for
model mutation. In: Proceedings of the 31st Annual ACM Symposium on Applied
Computing. pp. 1968–1973. SAC ’16, ACM, New York, NY, USA (2016)

9. Granda, M.F., Condori-Fernández, N., Vos, T.E.J., Pastor, O.: Mutation Operators
for UML Class Diagrams, pp. 325–341. Springer International Publishing (2016)

10. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv. 45(1) (Dec 2012)

11. Henard, C., Papadakis, M., Traon, Y.L.: Mutalog: A tool for mutating logic formu-
las. In: Software Testing, Verification and Validation Workshops (ICSTW), 2014
IEEE Seventh International Conference on. pp. 399–404 (March 2014)

12. Krall, J., Menzies, T., Davies, M.: Gale: Geometric active learning for search-based
software engineering. IEEE Transactions on Software Engineering (2015)

13. Lackner, H., Schmidt, M.: Towards the assessment of software product line tests:
A mutation system for variable systems. In: Proceedings of the 18th International
Software Product Line Conference: Companion Volume for Workshops, Demon-
strations and Tools - Volume 2. pp. 62–69. SPLC ’14, ACM, New York (2014)

14. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes
Theor. Comput. Sci. 152, 125–142 (Mar 2006)

15. Moawad, A., Hartmann, T., Fouquet, F., Nain, G., Klein, J., Bourcier, J.: Poly-
mer: A model-driven approach for simpler, safer, and evolutive multi-objective op-
timization development. In: Model-Driven Engineering and Software Development
(MODELSWARD), 2015 3rd International Conference on. pp. 1–8 (Feb 2015)

16. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An experimental de-
termination of sufficient mutant operators. ACM TSEM 5(2), 99–118 (1996)

17. Pietsch, P., Yazdi, H.S., Kelter, U.: Controlled generation of models with defined
properties. In: Software Engineering 2012: Fachtagung des GI-Fachbereichs Soft-
waretechnik, 27. Februar - 2. März 2012 in Berlin. pp. 95–106 (2012)

18. Sadigh, D., Seshia, S.A., Gupta, M.: Automating exercise generation: A step
towards meeting the mooc challenge for embedded systems. In: Proceedings of
the Workshop on Embedded and Cyber-Physical Systems Education. pp. 2:1–2:8.
WESE ’12, ACM, New York, NY, USA (2013)

19. da Silva, A.R.: Model-driven engineering: A survey supported by the unified con-
ceptual model. Computer Languages, Systems & Structures 43, 139 – 155 (2015)

20. da Silva Simão, A., Maldonado, J.C.: Mudel: a language and a system for describing
and generating mutants. J. Braz. Comp. Soc. 8(1), 73–86 (2002)

21. Stephan, M., Alalfi, M.H., Stevenson, A., Cordy, J.R.: Using mutation analysis
for a model-clone detector comparison framework. In: Proceedings of the 2013
International Conference on Software Engineering. pp. 1261–1264. ICSE ’13, IEEE
Press, Piscataway, NJ, USA (2013)

22. Vincenzi, A.M.R., Simão, A.S., Delamaro, M.E., Maldonado, J.C.: Muta-pro: To-
wards the definition of a mutation testing process. Journal of the Brazilian Com-
puter Society 12(2), 49–61 (2006)

	A DSL for Model Mutation and its Applications to Different Domains
	Problem
	Related work
	Proposed solution
	Preliminary work
	Expected contributions
	Plan for evaluation and validation
	Current status

