
Traceability of
Information Flow Requirements

in Cyber-Physical Systems Engineering

Christopher Gerking

Paderborn University, Heinz Nixdorf Institute
Software Engineering Research Group

Paderborn, Germany
christopher.gerking@upb.de

WWW home page:
https://www.hni.uni-paderborn.de/en/software-engineering

Abstract. The secure information flow between a cyber-physical system
and its environment has evolved into a critical factor. To comply with
security regulations, engineers of cyber-physical systems need to trace
information flow requirements from their specification to the software de-
sign. However, due to the interdisciplinary engineering of cyber-physical
systems and their inherent real-time behavior, requirements specified at a
discipline-spanning level are hard to verify at the discipline-specific soft-
ware design level. In this PhD project, we address this problem based on
a specification of information flow requirements in model-based systems
engineering. We provide a technique to verify if the real-time behavior
of software design models fulfills corresponding information flow prop-
erties, and trace verification results back to the initial requirements. By
establishing traceability, we enable engineers to ensure the regulatory
compliance of cyber-physical systems. We intend to validate the appli-
cability of our approach in the scope of an Industrial Internet scenario.

Keywords: requirements traceability, information flow security, systems
engineering

1 Problem

Along with the 4th industrial revolution, cyber-physical production systems are
expected to enable highly dynamic business relationships between companies.
Business partners are no longer pre-defined, but may change on the fly depending
on quality factors like cost, delivery time, or even environmental friendliness. Due
to the dynamic interconnection of systems in the Industrial Internet, security has
evolved into a critical factor because business secrets are at risk of being exposed
to unknown, untrusted business partners. To avoid violations of security policies,
the software that drives a cyber-physical system needs to control the information
flow between the system and its environment. Thus, systems must meet strict
information flow requirements.



For example, consider a production system that exchanges information with a
cloud-based service market to order materials. In addition, the system has access
to a confidential operating plan that is considered as a business secret. Thus,
it must not be exposed to the outside world. As an example for an information
flow requirement, the production system needs to avoid an illegitimate flow of
confidential information from the operating plan to the public service market.

Engineers of cyber-physical systems need to consider such requirements at
the design stage because mandatory regulations are expected to involve rigorous
security conditions. Before a novel system may start to operate, the compliance
with its regulations needs to be certified by authorities [11]. This regulatory
compliance often depends on the traceability of requirements, which is defined
as “the ability to describe and follow the life of a requirement in both a for-
wards and backwards direction” [7]. Traceability enables certifiers to reproduce
that a system complies to its specified requirements. Thus, traceability requires
engineers to trace information flow requirements from their specification to the
software design.

Model-driven engineering approaches enable software engineers to verify in-
formation flow properties at the level of software design models. Nevertheless,
due to several characteristics of cyber-physical systems, the traceability of infor-
mation flow requirements between specification and design is hard to establish
by engineers. In the following, we identify three challenges for engineers (C1-C3)
to be addressed in this PhD project.

First of all, beside software engineering, multiple other disciplines are in-
volved in the development of cyber-physical systems. An integration of these
disciplines at the level of model-based systems engineering [14] is beneficial for
providing a holistic view on a system under development. However, as shown
in Fig. 1, the integration also introduces an additional, discipline-spanning con-
ception stage, preceding the software design and implementation stages. During
the system conception, systems engineers create a model that includes an initial
specification of the system requirements (cf. Fig. 1). Due to the negative nature
of information flow requirements (describing an illegitimate flow to avoid), a
fit-for-purpose specification technique is needed.

C1: How can systems engineers specify information flow requirements at a
discipline-spanning conception stage?

Software 
Design

Implementation

Legend

Discipline-spanning
Stage

Discipline-specific
Stage

Traceability
System 

Conception

Specification of 
Information Flow 

Requirements

 Verification of 
Information Flow 

Properties

Fig. 1: Stages of the Engineering Process for Cyber-Physical Systems



Furthermore, due to their interaction with the physical environment, the
systems need to satisfy hard real-time constraints. In order to provide sound
results, verification techniques for information flow properties need to take this
real-time behavior into account. Any deviation compromises the soundness of
the verification and, therefore, prevents reliable requirements traceability.

C2: How can software engineers verify the information flow properties of soft-
ware design models under consideration of real-time behavior?

Finally, from the viewpoint of an individual discipline such as software en-
gineering, the discipline-spanning conception leads to an increased vagueness
of the requirements specification, as it relies on general terms without precise,
discipline-specific semantics. Vaguely specified information flow requirements are
hard to verify, even if software engineers have capable verification techniques at
hand. This divergence in terms of abstraction between requirements specifica-
tion and software design represents an obstacle for the desired traceability of
information flow requirements as depicted in Fig. 1.

C3: How to establish traceability between the information flow requirements
and the verification of information flow properties at the software design
level?

2 Related Work

Today, the field of model-based systems engineering is dominated by the Sys-
tems Modeling Language (SysML, [14]). Nejati et al. [13] establish traceability
between safety requirements and SysML models. In contrast, our intention to ver-
ify the information flow security (challenge C2) requires formal semantics of the
underlying modeling language. Therefore, we need to consider software design
models beyond the scope of SysML. Consens [3] is a method for model-based
systems engineering using SysML-compliant models. Consens is capable of de-
scribing information flow between model elements, and supports the transition
from systems engineering to the software design level. Therefore, Consens is a
suitable basis for our needs to consider the information flow of software design
models. As an example, Fig. 2a shows a Consens model of the interactions be-
tween a production system and its environment. Information is flowing from the
operating plan to the system, and from the system to the service market. How-
ever, the Consens approach neither supports the specification of illegitimate
information flow (challenge C1), as for example between the operating plan and
the service market, nor the traceability to the software design (challenge C3).

For the transition from Consens to the software design, Gausemeier et al. [4]
present a derivation of software component models based on Mechatronic-
UML (MUML, [8]), a model-driven software design method for cyber-physical
systems. As an example, Fig. 2b shows the software design of the production
system in terms of a MUML component model. Components exchange infor-
mation over ports. Whereas MUML supports the formal verification of safety



Service 
Market

Operating 
Plan

Production 
System

(a) Consens Environment Model

ProductionSystem

Control Scheduler

(b) MUML Component Model

Legend
Environmental 

Element
System Software 

Component Port

Material 
Flow

Information 
Flow

Fig. 2: Consens and MUML Models of the Production System

properties [5] under consideration of the real-time behavior of components, it
does not enable the verification of information flow properties (challenge C2).
As an example for such a property, the software design depicted in Fig. 2b needs
to ensure that the Control component does not leak any confidential information
about the operating plan that it receives from the Scheduler.

In general, such information flow properties are verifiable on the theoretical
basis of noninterference [6], which states that a system is secure in terms of
information flow, if the confidential inputs to a system do not affect any outputs
with a lower confidentiality. If a system ensures this policy, no illegitimate flow of
confidential information can ever occur. Whereas Barbuti and Tesei [2] adjust the
theory of noninterference to real-time systems, their approach lacks a verification
technique that is amenable to industrial-scale design models, and is ready to use
by software engineers. This is in accordance with the observation by Mantel [12]
that “software engineering does not respect information flow security”.

A model-driven software design approach supporting the verification of in-
formation flow properties is UMLsec [10]. The authors use adversary models to
describe the capabilities of attackers, and verify that the design prevents vul-
nerabilities that might be exploited by such attackers. Ochoa et al. [16,15] dis-
cuss explicitly the noninterference verification of UMLsec statemachine models.
Houmb et al. [9] provide guidelines to ensure traceability of security requirements
(challenge C3) through a systematic derivation of a UMLsec design. However,
due to the missing notion of real-time, the UMLsec approach is not capable of
verifying information flow properties of cyber-physical systems (challenge C2).

In summary, none of the mentioned approaches supports the specification of
illegitimate information flow in model-based systems engineering, as demanded
by challenge C1. With respect to challenge C2, verification techniques either dis-
regard the real-time behavior, or lack an integration with model-driven software
design. Due to these shortcomings, none of the mentioned approaches is cur-
rently suitable for tracing information flow requirements between specification
and software design (challenge C3).



3 Proposed Solution

We choose MUML as the underlying software design method due to its exist-
ing support for real-time, and due to our preliminary work on the approach
(cf. Sect. 4). Furthermore, we rely on Consens for the specification of require-
ments due to its tight integration with MUML. More precisely, we provide the
following partial solutions to the traceability problem for information flow re-
quirements:

Specification of illegitimate information flow at the level of Consens sys-
tem models. To address challenge C1, we provide systems engineers with a
specification technique for information flow requirements, allowing them to
mark a flow between elements of a system, or its environment, as illegiti-
mate. The specification needs to take place in a form that enables a later
comparison against the actual information flow detected through verifica-
tion. Thus, by distinguishing illegitimate from legitimate flow, it is possible
to judge whether the information flow requirements are violated.

Deriving verifiable information flow properties from the specified require-
ments in an automatic fashion. As a contribution to challenge C3, the derived
properties relate the initial requirements to a MUML software design model,
and allow to verify the model’s compliance. In order to produce meaningful
verification results, the derived properties need to preserve the semantics of
the initial requirements and, therefore, the derivation needs to interrelate
the Consens system model and the MUML software design model. It is
beneficial to infer the relation between these models automatically from the
traces of a model transformation.

Real-time verification of noninterference properties on the basis of soft-
ware design models. In order to overcome challenge C2, i.e., to decide whether
a given MUML model fulfills the derived information flow properties, a rigor-
ous verification of the noninterference needs to be carried out. To this end, we
enrich the theoretical basis of real-time noninterference [2] by a ready-to-use
verification technique. To cope with the infinite, real-valued statespace, we
explicitly consider the applicability of existing verification techniques from
the area of real-time model checking [1].

Reinterpretation of the verification results to trace them back to the ini-
tial requirements as a further contribution to challenge C3. Depending on
the complexity of the interrelations between MUML software design and
Consens system model, the verification results obtained so far are of little
significance, as they do not allow the engineers to draw immediate conclu-
sions about the initial information flow requirements. Therefore, in order
to give significance to the results, we automatically relate them back to
the requirements specified initially. Every specified requirement needs to be
marked as met (if the non-occurrence of information flow has been proved by
the verification), or as a violation (if the verification detected the occurrence
of an illegitimate flow). Again, the trace of an earlier model transformation
from Consens to MUML might contribute to the reinterpretation of the
verification results by resolving the interrelations between both models.



4 Preliminary Work

Up to now, our research efforts focused mainly on the verification of MUML soft-
ware design models (challenge C2) in order to provide an underlying back-end
for the envisioned traceability solution. In [5], we propose the application of real-
time model checking techniques in a cyber-physical system context. In order to
ensure domain-specific applicability, we translate temporal logic properties from
MUML to the input language of a real-time model checker, and the verification
results back to MUML. However, by focusing on general temporal logic prop-
erties, the verification of information flow properties is beyond the scope of the
approach up to now.

5 Expected Contributions

By overcoming challenge C2, we contribute to the verification of noninterference
properties in terms of a ready-to-use, yet theorized verification technique for
cyber-physical systems. In addition, we contribute a specification technique for
illegitimate information flow in the context of model-based systems engineering
by overcoming challenge C1. Finally, addressing challenge C3 will provide a gen-
eral insight into the traceability of requirements across the boundary between
discipline-spanning specification and discipline-specific verification. On the prac-
tical side, traceability enables systems engineers to receive feedback as to whether
the specified requirements are met or violated by the software design. Further-
more, we also provide software engineers with a technique to verify information
flow properties of design models in a cyber-physical systems context.

6 Plan for Evaluation and Validation

To evaluate our contributions, we conduct case studies on the engineering of
highly interconnected cyber-physical systems with strict information flow re-
quirements, e.g., for protecting business secrets or personal data in the Industrial
Internet. Our case studies traverse the engineering process including model-based
systems engineering and software design. We will define measurable quality char-
acteristics to validate that our work meets the challenges described in Sect. 1:

C1: We contrast the requirements specification at the systems engineering level
with the specification of equivalent properties at the software design level,
to demonstrate the reduced effort and expertise.

C2: We compare the real-time verification against a technique without a concept
of time to demonstrate the improvements with respect to the number of
violations identified and false positives avoided.

C3: We provide an integrated view of systems engineering and software design
to validate that our solution enables a precise distinction between violated
requirements on the one hand, and requirements that are met on the other
hand.



7 Current Status

We currently work towards reducing the verification problem (challenge C2) to a
refinement check for real-time systems [8]. After preparing the verification back-
end, we plan to address the requirements specification at the level of model-based
systems engineering (challenge C1), and the derivation of verifiable properties
within the next year. Finally, we intend to carry out the final integration of
systems engineering and software design in order to establish the desired trace-
ability solution (challenge C3). Our evaluation strategy enables us to carry out
a stepwise, incremental validation of our contributions.

References

1. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Informa-
tion and Computation 104(1), 2–34 (1993)

2. Barbuti, R., Tesei, L.: A decidable notion of timed non-interference. Fundamenta
Informaticae 54(2-3), 137–150 (2003)

3. Dorociak, R., Dumitrescu, R., Gausemeier, J., Iwanek, P.: Specification technique
Consens for the description of self-optimizing systems. In: Design Methodology
for Intelligent Technical Systems. Springer (2014)

4. Gausemeier, J., Schäfer, W., Greenyer, J., Kahl, S., Pook, S., Rieke, J.: Man-
agement of cross-domain model consistency during the development of advanced
mechatronic systems. In: ICED 09. pp. 1–12 (2009)

5. Gerking, C., Schäfer, W., Dziwok, S., Heinzemann, C.: Domain-specific model
checking for cyber-physical systems. In: MoDeVVa 2015. pp. 18–27 (2015)

6. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy 1982. pp. 11–20. IEEE (1982)

7. Gotel, O.C.Z., Finkelstein, A.: An analysis of the requirements traceability prob-
lem. In: ICRE ’94. pp. 94–101. IEEE (1994)

8. Heinzemann, C., Brenner, C., Dziwok, S., Schäfer, W.: Automata-based refinement
checking for real-time systems. Computer Science — Research and Development
30(3-4), 255–283 (2015)

9. Houmb, S.H., Islam, S., Knauss, E., Jürjens, J., Schneider, K.: Eliciting security
requirements and tracing them to design. Requirements Engineering 15(1), 63–93
(2010)

10. Jürjens, J.: Secure systems development with UML. Springer (2005)
11. Kokaly, S., Salay, R., Sabetzadeh, M., Chechik, M., Maibaum, T.: Model manage-

ment for regulatory compliance. In: MiSE@ICSE 2016. pp. 74–80. ACM (2016)
12. Mantel, H.: Information flow and noninterference. In: Encyclopedia of Cryptogra-

phy and Security, 2nd Ed., pp. 605–607. Springer (2011)
13. Nejati, S., Sabetzadeh, M., Falessi, D., Briand, L.C., Coq, T.: A SysML-based

approach to traceability management and design slicing in support of safety certi-
fication. Information & Software Technology 54(6), 569–590 (2012)

14. Object Management Group: OMG Systems Modeling Language 1.4 (2015)
15. Ochoa, M., Cuéllar, J., Pretschner, A., Hallgren, P.A.: Idea: Unwinding based

model-checking and testing for non-interference on EFSMs. In: ESSoS 2015. pp.
34–42. Springer (2015)

16. Ochoa, M., Jürjens, J., Cuéllar, J.: Non-interference on UML state-charts. In:
TOOLS 2012. pp. 219–235. Springer (2012)


	Traceability of Information Flow Requirements in Cyber-Physical Systems Engineering

