
CAPS-PRC: A System for Personality Recognition in
Programming Code

Notebook for PAN at FIRE16

Ivan Bilan
Center for Information and

Language Processing
Ludwig Maximilian University

of Munich
Oettingenstr. 67

Munich, Germany
ivan.bilan@gmx.de

Eduard Saller
Center for Information and

Language Processing
Ludwig Maximilian University

of Munich
Oettingenstr. 67

Munich, Germany
eduard@saller.io

Benjamin Roth
Center for Information and

Language Processing
Ludwig Maximilian University

of Munich
Oettingenstr. 67

Munich, Germany
beroth@cis.uni-
muenchen.de

Mariia Krytchak
Department of Psychology

Ludwig Maximilian University
of Munich

Leopoldstr. 13
Munich, Germany

mariia.krytchak@gmx.de

ABSTRACT
This paper describes the participation of the CAPS-PRC
system developed at the LMU Munich in the personality
recognition shared task (PR-SOCO) organized by PAN at
the FIRE16 Conference. The machine learning system uses
the output of a Java code analyzer to investigate the struc-
ture of a given program, its length, its average variable
length and also it takes into account the comments a given
programmer wrote. The comments are analyzed by language
independent stylometric features, including TF-IDF distri-
bution, average word length, type/token ration and more.
The system was evaluated using Root Mean Squared Error
(RMSE) and Pearson Product-Moment Correlation (PC).
The best run exhibited the following results: Neuroticism
(RMSE - 10.42, PC - 0.04), Extroversion (RMSE - 8.96, PC
- 0.16), Openness (RMSE - 7.54, PC - 0.1), Agreeableness
(RMSE - 9.16, PC - 0.04), Conscientiousness (RMSE - 8.61,
PC - 0.07).

Keywords
machine learning; Big Five personality traits; source code
analysis; abstract syntax tree

1. INTRODUCTION
The main purpose of the task is to investigate whether

it is possible to predict personality traits of programmers
based on the source code written by them [8]. Previous
research has identified the relationship between personality
factors and computer programming styles having used dif-
ferent measures of personality [2] [4]. The task considers
the Big Five personality traits which were assessed by the

NEO-PI-R Inventory [5] to form the training set [8]: ex-
troversion, emotional stability/neuroticism, agreeableness,
conscientiousness, and openness to experience. The Big Five
Model, i.e. five broad fairly independent dimensions, encom-
passes all personality traits and is considered to describe the
personality in a comprehensive way. The NEO-PI-R Inven-
tory is a statistically reliable and valid tool that operational-
izes the Big Five Model through self/other-assessment and is
set in various cross professional and cross cultural contexts
to describe the personality.

2. EXPERIMENTAL SETUP

2.1 Approaching the problem
Based on the available research on the Big Five psycholog-

ical traits [5] [3], we can see that the traits are considered to
be independent of each other. For this reason, each psycho-
logical trait was viewed and analyzed individually. Figures
1 to 5 show the distribution of the training set for each psy-
chological trait by author. Table 1 shows the mean trait
distribution.

Since each programmer/author has submitted more than
one program, we approach the problem from two different
angles:

1) the feature vectors are extracted for each programmer,
by first extracting them for each program and then averag-
ing all the underlying feature vectors into one single feature
vector for the author. The classifier learns based on a single
feature vector for each author, where the author represents
one sample in the dataset.

2) the classifier is trained at the level of programs. Each
program inherits the trait value of its author. The feature
vectors are extracted for each program and then the classifier
regards each program as a training instance. To get back to



Figure 1: Author Distribution, Agreeableness

Figure 2: Author Distribution, Conscientiousness

Figure 3: Author Distribution, Extroversion

the level of authors (while the final prediction should be
done for the author), the predictions are averaged for each

Figure 4: Author Distribution, Neuroticism

Figure 5: Author Distribution, Openness

program belonging to a certain author. The final result is
a single prediction for each author based on the predictions
produced for each underlying program.

2.2 Feature Extraction

2.2.1 Abstract syntax tree
We use a grammar γ specifically designed for the analy-

sis of a programming language β, which in the context of
the task was the Java programming language. The gram-
mar γ combined with a parser ρ provides a semantic repre-
sentation of the source code called an abstract syntax tree
(AST). Compared to normal parse trees there are some po-
tential advantages. First, the generation of an AST can
be interpreted as a normalization step of our feature gen-
eration. In contrast to the original source code, which has
inconsistencies like whitespace characters or other unneeded
characters, the AST represents a concise version of a given
program. This also makes the generation of meta-features
(compositions of different base features) more simple, due to
the strict representation of all, to the compiler important,
parts of the program. Additionally, the representing syn-



Trait Mean Value Standard
Deviation

Agreeableness 47.02 8.95
Conscientiousness 46.37 6.46

Extroversion 45.22 8.19
Neuroticism 49.92 11.15
Openness 49.51 6.68

Table 1: Mean Trait Distribution, Training Set

Distribution / Dataset Train Set Test Set
Min. Programs per Author 6 14
Mean Programs per Author 37 37
Max. Programs per Author 122 109
Total Number of Programs 1790 772
Total Number of Authors 49 22

Table 2: Programs per Author

tax tree is not necessarily bound by the original syntactic
rules of the original programming language β which allows
for generalizations of the source code to occur.

In our approach, we use the frequency distribution of all
known entities in the grammar to build a feature list for a
given program. This shallow use of the AST provides 237
features for a given source code analysis. Some examples
would be the Type of variables or the nature of a state-
ment(do, for, while, etc.) The implementation of the AST
is made possible with the help of ANTLR parser [6].

2.2.2 Custom Features
In addition to the AST, we used additional features for

the source code and also the comments. The following is an
exhaustive list of all additional features used.

Code-based features: length of the whole program (in
lines of code, in characters), the average length of variable
names, what indentation the programmer is using (tabs or
spaces).

Comment-based features: type/token ratio, usage of
punctuation marks, TF-IDF, the frequency of comments
(block comments and inline comments separately), average
word length.

Author-level based features: number of programs sub-
mitted (see Table 2), average length of programs in lines of
code.

2.3 Classification
We experimented with a number of Regression classifiers

like Linear Regression, Ridge Regression, Logistic Regres-
sion and Gradient Boosted Regression. In addition, we have
tried to detect the outliers with the RANdom SAmple Con-
sensus (RANSAC). The final system implementation did not
use RANSAC, since it delivered worse results. Although,
this technique should be further investigated with a bigger
dataset.

We have submitted our final runs based on two machine
learning algorithms: Gradient Boosted Regression and Multi-
nomial Logistic Regression. Furthermore, Gradient Boosted
Regression was evaluated on the level of authors and the
programs level, while the Multinomial Logistic Regression

Personality
Traits

Author-based
Evaluation Metric

RMSE PC
Agreeableness 9.17 -0.12

Conscientiousness 8.83 -0.31
Extroversion 9.55 -0.1
Neuroticism 10.28 0.14
Openness 7.25 -0.1

Table 3: Results of the Multinomial Logistic Regres-
sion Approach

was implemented on the level of authors.
The first classification approach is based on Gradient Boosted

Regression with least squares regression as its loss function,
1100 estimators, 5 as the maximum depth of the individ-
ual regression estimators, and the learning rate of 0.1. This
approach also utilized χ2 test for the feature selection to
choose only the best 200 features from the AST feature ex-
traction pipeline. This approach was implemented using the
scikit-learn Python library [7].

The second approach is based on the Multinomial Logistic
Regression model with the l2-regularized squared loss as its
objective function. That is, each feature was multiplied with
a trait-specific weight, and the result of this linear combina-
tion was the input to a sigmoid activation. As the output
of this prediction is in the range [0,1], we re-scaled the trait
values in the training data to the same range for computing
the squared loss.

Training was done using stochastic gradient descent with
constant learning rate, and parameters were tuned on the
held-out development set using random search. The search
space of the parameters was: learning rate ∈ 0.01, 0.1, 1,
number of training epochs ∈ {10, 20, 50, 100, 200, 500}, regu-
larization ∈ {0, 0.001, 0.01, 0.1, 1}, (mini-)batch size ∈ {1, all}.
The best configuration was: learning rate: 1, training-epochs:
2, regularization: 0.6, batch-size: all. This approach was de-
veloped with theano Python library [1].

3. EXPERIMENTAL RESULTS
The dataset included 49 programmers in the training set

(with 1790 programs in total) and 22 programmers in the
test set (772 programs). Final evaluation was done with
two different evaluation metrics: Root Mean Squared Error
(RMSE) and Pearson Product-Moment Correlation (PC).
In the Gradient Boosted Regression approach (GBR Ap-
proach), the system was tuned to maximize both of these
metrics at the same time, while the Multinomial Logistic Re-
gression one (MLR Approach) concentrated on RMSE. Ta-
ble 3 gives a detailed overview of the results achieved using
Multinomial Logistic Regression at the level of authors. Ta-
ble 4 shows the results achieved using the Gradient Boosted
Regression approach at the level of authors and the level of
programs.

In general, the results are low using both RMSE and PC
and only slightly outperform the performance of the baseline
approaches (see Table 5). Two baselines have been provided
by the task organizers [8]:

1) 3-gram character representation.
2) always predict the mean trait value of the training

dataset.



Personality
Traits

Author-based Program-based
Evaluation Metric

RMSE PC RMSE PC
Agreeableness 10.89 -0.05 9.16 0.04

Conscientiousness 8.9 0.16 8.61 0.07
Extroversion 11.18 -0.35 8.96 0.16
Neuroticism 12.06 -0.04 10.42 0.04
Openness 7.5 0.35 7.54 0.1

Table 4: Results of the Gradient Boosted Regression
Approach

Personality
Traits

3-gram characters Mean value
Evaluation Metric

RMSE PC RMSE PC
Agreeableness 9.00 0.20 9.04 0.00

Conscientiousness 8.47 0.17 8.54 0.00
Extroversion 9.06 0.12 9.06 0.00
Neuroticism 10.29 0.06 10.26 0.00
Openness 7.74 -0.17 7.57 0.00

Table 5: Baseline Approaches

4. CONCLUSIONS
This paper describes the system that given a source code

collection of a programmer, identifies their personality traits.
While the RMSE and PC scores proved promising during de-
velopment, further investigation suggested the dataset may
be too small to create an effective machine learning system.
The compiler style feature generation process using ASTs
combined with several custom features could serve as future
baselines for similar tasks.

4.1 Future Work
The task would benefit greatly from an expanded training

corpus (more samples per programmer, more programmers).
The value distribution of the training set is also an important
point. The current training set exhibits normal distributed
scores for each Big Five trait. A more robust system could
be created when using an equal number of samples within
low, mid and high value range.

Additionally, further feature engineering, additional sta-
tistical analysis of the AST output, and transferring strate-
gies of other NLP tasks involving syntax trees onto the cur-
rent task could improve the system.

5. REFERENCES
[1] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller,

D. Bahdanau, N. Ballas, F. Bastien, J. Bayer,
A. Belikov, A. Belopolsky, Y. Bengio, A. Bergeron,
J. Bergstra, V. Bisson, J. Bleecher Snyder,
N. Bouchard, N. Boulanger-Lewandowski,
X. Bouthillier, A. de Brébisson, O. Breuleux, P.-L.
Carrier, K. Cho, J. Chorowski, P. Christiano,
T. Cooijmans, M.-A. Côté, M. Côté, A. Courville,
Y. N. Dauphin, O. Delalleau, J. Demouth,
G. Desjardins, S. Dieleman, L. Dinh, M. Ducoffe,
V. Dumoulin, S. Ebrahimi Kahou, D. Erhan, Z. Fan,
O. Firat, M. Germain, X. Glorot, I. Goodfellow,
M. Graham, C. Gulcehre, P. Hamel, I. Harlouchet, J.-P.

Heng, B. Hidasi, S. Honari, A. Jain, S. Jean, K. Jia,
M. Korobov, V. Kulkarni, A. Lamb, P. Lamblin,
E. Larsen, C. Laurent, S. Lee, S. Lefrancois,
S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey,
C. Lorenz, J. Lowin, Q. Ma, P.-A. Manzagol,
O. Mastropietro, R. T. McGibbon, R. Memisevic,
B. van Merriënboer, V. Michalski, M. Mirza,
A. Orlandi, C. Pal, R. Pascanu, M. Pezeshki, C. Raffel,
D. Renshaw, M. Rocklin, A. Romero, M. Roth,
P. Sadowski, J. Salvatier, F. Savard, J. Schlüter,
J. Schulman, G. Schwartz, I. V. Serban, D. Serdyuk,
S. Shabanian, E. Simon, S. Spieckermann, S. R.
Subramanyam, J. Sygnowski, J. Tanguay, G. van
Tulder, J. Turian, S. Urban, P. Vincent, F. Visin,
H. de Vries, D. Warde-Farley, D. J. Webb, M. Willson,
K. Xu, L. Xue, L. Yao, S. Zhang, and Y. Zhang.
Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints,
abs/1605.02688, May 2016.

[2] C. Bishop-Clark. Cognitive style, personality, and
computer programming. Computers in Human
Behavior, 11(2):241–260, 1995.

[3] O. P. John and S. Srivastava. The big five trait
taxonomy: History, measurement, and theoretical
perspectives. Handbook of personality: Theory and
research, 2(1999):102–138, 1999.

[4] Z. Karimi, A. Baraani-Dastjerdi, N. Ghasem-Aghaee,
and S. Wagner. Links between the personalities, styles
and performance in computer programming. Journal of
Systems and Software, 111:228–241, 2016.

[5] F. Ostendorf and A. Angleitner. Neo-PI-R:
Neo-Persönlichkeitsinventar nach Costa und McCrae.
Hogrefe, 2004.

[6] T. Parr. The definitive ANTLR 4 reference. Pragmatic
Bookshelf, 2013.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in python.
J. Mach. Learn. Res., 12:2825–2830, Nov. 2011.

[8] F. Rangel, F. González, F. Restrepo, M. Montes, and
P. Rosso. Pan at fire: Overview of the pr-soco track on
personality recognition in source code. In Working
notes of FIRE 2016 - Forum for Information Retrieval
Evaluation, Kolkata, India, December 7-10, 2016,
CEUR Workshop Proceedings. CEUR-WS.org, 2016.


