
Personality Recognition Applying Machine Learning
Techniques on Source Code Metrics

Hugo A. Castellanos
Universidad Nacional de Colombia

Bogotá, Colombia
hacastellanosm@unal.edu.co

ABSTRACT
Source code has become a data source of interest in the re-
cent years. In the software industry is common the extrac-
tion of source code metrics, mainly for quality assurance pur-
poses. In this paper source code metrics are used to consol-
idate programmers profiles with the purpose to identify dif-
ferent personality traits using machine learning algorithms.
This work was done as part of the Personality Recognition
in SOurce COde (PR-SOCO) shared task in the Forum for
Information Retrieval Evaluation 2016 (FIRE 2016).

CCS Concepts
•Information systems → Content analysis and fea-
ture selection; •Computing methodologies → Super-
vised learning by regression; Cluster analysis; •General and
reference → Metrics; •Software and its engineering
→ Parsers;

Keywords
Personality recognition; Source code metrics; Support Vec-
tor Regression

1. INTRODUCTION
Pieces of text have been always of interest in information

retrieval as text based documents contain valuable informa-
tion about the author. During recent decades source code
has become a source of valuable information as well. Many
efforts in this field have been addressed to improve both
processes and products in the software development indus-
try [8].

The main efforts in source code analysis have been focused
in forensics applications like author recognition [5], and pla-
giarism detection [2]. Several techniques have been used
successfully in the mentioned tasks like n-grams, source code
metrics, coding styles and abstract syntax trees [6]. Other
applications of source code analysis include feature location
[3], topics identification [7], among others.

The PR-SOCO shared task consisted in predict the per-
sonality traits of a programmer given a set of his/her source
codes. These source codes as any other production of a hu-
man being may be influenced by personality.

In this work, the use of source code metrics is proposed
to find information about the program author. Specifically,
the author personality traits based on the Big-5 personality
test. In addition, machine learning methods are used to
predict the personality traits based on the extracted source
code metrics.

The rest of this paper is organized as follows. Section 2
presents a general background on source code metrics. Sec-
tion 3 describes the proposed approach. Section 4 presents
the machine learning strategies. Section 5 presents the ob-
tained results. Finally, Section 6 concludes the paper.

2. BACKGROUND ON SOURCE CODE MET-
RICS

According to Malhotra [8], software metrics are used to
assess the quality of the product or process used to build it.
Such metrics have the following characteristics:

• Quantitative: metrics have a value.

• Understandable: the way the metric is calculated must
be easy to understand.

• Validatable: metrics must capture the attributes which
they were designed to.

• Economical: it must be economical to capture the met-
ric.

• Repeatable: if measured several times the results should
be the same.

• Language independent: the metrics should not depend
to a specific language.

• Applicability: the metric should be applicable in any
phase of the software development.

• Comparable: the metric should correlate with another
metric capturing the same concept.

Source code metrics must have a scale which can be:

• Interval: it is given by a defined range of values.

• Ratio: it is a value which has an absolute minimum or
zero point.

• Absolute: it is a simple count of the elements of inter-
est.

• Nominal: it is a value which mainly defines a discrete
scale of values, like 1-present or 0-not present.

• Ordinal: it is a categorization which is intended to
order or rank, for instance levels of severity: critical,
high, medium, etc.



The metrics can be classified according the intended mea-
sure:

• Size: usually intended to estimate cost and effort. The
most popular metric in this category are the source
lines of code (SLOC). But in object oriented languages
the size can be measured by the number of classes,
methods and attributes.

• Software quality: intended to measure the quality of
the software, this metric can be divided in the following
categories:

– Based on defects: they consist in measure the
level of defects. The main metrics of this cate-
gory are: the defect density defined as the number
of defects by SLOC; defect removal effectiveness
which is defined as the number of defects removed
in a phase divided by latent defects. If the latent
defects are unknown then can be estimated based
on previous phases.

– Usability: this kind of metrics are intended to
measure the user satisfaction using the software.
The satisfaction can be given be the ease to use
and learn.

– Complexity metrics [9]: they are oriented to pro-
duce a measure on the difficulty to test or main-
tain a piece of source code. This metric also
give information about the amount of instructions
during execution.

– Testing: intended to measure the progress of test-
ing over a software

• Object oriented metrics: intended to measure object
oriented paradigm features. They can be divided in:

– Coupling: measure of the level of interdependence
between classes, it is calculated counting the num-
ber of classes called by another class.

– Cohesion: measures how many elements of a class
are functionally related to each other.

– Inheritance: it measures the depth of the class
hierarchy.

– Reuse: measure of the amount of times that a
class is reused.

– Size: intended to measure the size but not only
in lines of code but also in the particularities of
object oriented paradigm, like method count, at-
tribute count, class count, etc.

• Evolutionary metrics: try to measure the evolution of
a software based on different elements like revisions,
refactorings, bug-fixes. The measure how much lines
of code are new, modified or deleted.

Additionally the empirical Halstead metrics [4] should also
be considered. The base to calculate these metrics are the
operands (identifiers) and operators (keywords, ++, +).
Equation 1 consist in the sum of the unique operators (n1)
and operands (n2). Length, described in Equation 2, is the
sum of the total number of operands (N1) and operators
(N2).

n = n1 + n2 (1)

N = N1 +N2 (2)

The Halstead volume (V ), described in Equation 3, is a
measure of size but it is also interpreted as the number of
mental comparisons that were needed to write a program
with length N . Moreover, the difficulty (D), shown in Equa-
tion 4, describes the difficulty to write a program. It is
highly related to volume because as it increases the diffi-
culty also does.

V = N log2 n (3)

D =
n1

2
· N2

n2
(4)

The effort (E) described in Equation 5, indicates the effort
required to write a program of high difficulty.

E = D · V (5)

Finally, the effort is the base to calculate the time to un-
derstand/implement (T ) and bugs delivered (B), as can be
seen in Equations 6 and 7, respectively. The time metric
is related to the Stroud number [12], which is the ”number
of elementary discrimination per second”. Stroud claimed
that this number ranges from 5 to 20, but the Halstead’s
experiments indicated empirically that the best number in
this case was 18.

T =
E

18
(6)

B =
E

2
3

3000
(7)

3. SOURCE CODE ANALYSIS FOR PERSON-
ALITY RECOGNITION

Text documents, contains information about the author.
In the work described in [1], the authors were able to show
that certain personality traits could be predicted based on
a text, in this case, an essay.

The present work starts from the hypothesis that source
code, as a form of text, leaves traces of the author’s person-
ality traits. To the scope of this work source code is a text
document written by a single author. It is worth mention-
ing that a single problem solution could be implemented in
several ways by a programmer which give a certain guaranty
of uniqueness.

To develop this hypothesis, a method is proposed to ex-
tract metrics from source code to be able to predict the
personality traits. In Figure 1 the general method is sum-
marized. As first step the source examples provided are
separated into individual files. Later a set of metrics is ex-
tracted from the source codes using a source code analyzer.
With the extracted metrics as an input, machine learning
methods are applied in order to predict the personality traits
of the authors. Finally, the results are presented.



Figure 1: Process summary.

The provided corpus consisted in a source code file per
person, and another file which indicates author and his/her
personality traits (ground truth). Each source code file con-
tained several source code pieces divided by a mark. The
file was split into several individual files keeping track of the
author-file relationship.

An analyzer was written using ANTLR 4 [10] with the
java grammar. From each individual file the source code
metrics described in Table 1 were extracted.

As can be seen most of the metrics are based in counting
and obtaining the average. All the metrics were normalized,
such normalized data were the input of the machine learning
algorithms.

As the extracted metrics are from similar categories, a hi-
erarchical clustering using the Ward’s method [13] was ap-
plied. It was found that certain related metrics were too
close to each other. Therefore, they were consolidated as
follows:

• Length metrics: contain the metrics related to some
length/size measure and it is calculated as the average
among: amount of files, average source lines of code,
average class number per file, average source code lines
per class, average attributes per class, average methods
per class, average class name length, and the average
number of parameters.

• Complexity metrics: contain the metrics related with
algorithm complexity and it is calculated as the aver-
age of: average amount of for loops, average amount
of while loops, average amount of if clauses, average
amount of if-else clauses, and the average identifier
length.

• Halstead : contains all the Halstead metrics extracted,
it was calculated as the average of: Halstead bugs de-
livered, Halstead difficulty, Halstead effort, Halstead
time to understand or implement, Halstead volume.

Table 1: Metrics extracted from source code
Metric Basic description
Amount of files The total amount of files.
Average source
lines of code

The average of source
lines of code.

Average class number
per file

The average of classes
per source code file.

Average source code
lines per class

The average of source
code lines per class.

Average attributes per class
The average of attributes
contained in a class.

Average methods per class
The average number
of methods contained
in a class.

Average class name length
The average length
of a class name.

Average amount
of for loops

The average amount of
for loops contained
in a method.

Average amount
of while loops

The average amount of
while loops contained
in a method.

Average amount
of if clauses

The average amount
of if clauses contained
in a method.

Average amount of
if-else clauses

The average amount
of if-else clauses contained
in a method.

Average identifier length
The average identifier
length per files.

Average parameters
Average number of
parameters in methods.

Average ciclomatic
complexity

Indicates the cyclomatic
complexity average.

Average of
static attributes

The average number
of static attributes
contained in a class.

Average of static methods
The average of
static methods
contained in a class.

Halstead bugs delivered

Indicates the number of
possible bugs generated
based on the halstead
metrics.

Halstead Difficulty
An index which
measures the difficulty
to write the program.

Halstead Effort
An index which measures
the necessary effort to
write the code.

Halstead Time to
understand or implement

An index which indicates
the time taken to write
a source code.

Halstead volume
Indicates how much
information the reader needs
to understand the code.



4. MACHINE LEARNING METHODS
In this section the used machine learning methods are de-

scribed. Each one corresponds to a submission sent to the
shared task: submission 1 corresponds to support vector re-
gression (SVR) over source code metrics, submission 2 cor-
responds to extra trees regressor (ETR), and submission 3
corresponds to support vector regression over averages.

4.1 Support vector regression (SVR) on met-
rics

A SVR algorithm was used jointly with the extracted met-
rics as input. For each personality trait an independent SVR
was used and a 6-fold cross validation was executed over the
corpus. The best parameters according with this validation
can be seen in the Table 2. The Figure 2 shows the result-
ing mean squared error (y axis) versus the gamma variation
(x axis) with the best C and ε values in logarithmic scale
in cross validation. This behavior was similar for all the
personality traits.

4.2 Extra trees regressor (ETR) on metrics
Another method applied was the Extra trees regressor,

for each personality trait a 6 fold cross validation was per-
formed. For the parameter number of estimators for all
traits the best value was 77.

4.3 Support vector regression (SVR) on aver-
ages

Based on the clustering results a SVR was used with the
metrics averages as input, i.e., length metrics, complexity

Table 2: Best parameters with SVR with metrics
according with cross validation

Personality trait C γ ε

Emotional stability 32 8 2−14

Extroversion 32 16 2−12

Openness to experience 32 16 2−19

Agreeableness 32 8 2−10

Conscientiousness 32 16 2−54

2-6 2-5 2-4 2-3 2-2 2-1 20 21 22 23 24 25
−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

Figure 2: Variation of γ parameter in SVR versus
the resulting error in cross validation with the best
C and ε parameters.

metrics, and Halstead metrics. The first step was to calcu-
late the variance. As the complexity metrics variance was
too low, it was removed and only the length and Halstead
average metrics were used as input.

The best parameters according with cross validation can
be seen in Table 3. The graphics of γ versus error for the
best C and ε values have a similar behavior of the one shown
in Figure 2.

Table 3: Best parameters for SVR with metric av-
erages according with cross validation

Personality trait C γ ε

Emotional stability 32 1
49

2−11

Extroversion 32 2−3 2−10

Openness to experience 32 1
49

2−10

Agreeableness 32 2 2−11

Conscientiousness 32 0.5 2−37

5. RESULTS
Using the mentioned algorithms with the previously de-

scribed inputs and parameters, the prediction was done on
the test dataset. Results can be seen in the Tables 4, 5, and
6.

The three proposed methods obtained a similar perfor-
mance with Root Mean Squared Error (RMSE). The SVR
with metrics have slightly better results. This could be
caused by the removal of the complexity metrics.

When evaluated with RMSE the Openness trait was the
best result in all the three applied methods, being consistent

Table 4: Results over test data with SVR using met-
rics as input

Personality trait MSE PC
Emotional stability 11.83 0.05

Extroversion 9.54 0.11
Openness to experience 8.14 0.28

Agreeableness 10.48 -0.08
Conscientiousness 8.39 -0.09

Table 5: Results over test data with Extra Tree Re-
gressor using metrics as input

Personality trait MSE PC
Emotional stability 10.31 0.02

Extroversion 9.06 0.0
Openness to experience 7.27 0.29

Agreeableness 9.61 -0.11
Conscientiousness 8.47 0.16

Table 6: Results over test data with SVR using met-
ric averages as input

Personality trait MSE PC
Emotional stability 10.24 0.03

Extroversion 9.01 0.01
Openness to experience 7.34 0.3

Agreeableness 9.36 0.01
Conscientiousness 9.99 -0.25



with other participant results, and showing better results
than the baseline in submissions 2 and 3. Conscientiousness
followed with the best error for the SVR and Extra Tree
Regressor.

The worst predicted trait with RMSE was Emotional Sta-
bility/Neuroticism in all methods, based in the results of
other participants1, this was a general result [11]. A deep
study in this particular trait is required to improve the re-
sults.

When measured with Pearson Product-Moment Correla-
tion (PC), the results are very different among runs. But
submissions 2 and 3 showed much better results compared
with baseline because indicates a stronger correlation that
the one showed in the baseline. The SVR with averages
has an important correlation in openness with value of 0.3
and conscientiousness with value of -0.25. In the ETR run,
openness was the highest value with 0.29. SVR over metrics
in openness also had the highest value with 0.28. This trait
was the most consistent among all the used methods.

It is interesting that PC shows correlations with openness
and conscientiousness. This is a good result because indi-
cates that the used metrics have certain relationship whit the
mentioned personality traits. Compared with the baseline
RMSE, the proposed method performed slightly better, but
still it is not significant, which shows that more work is re-
quired to obtain a good predictor of personality. Therefore,
it is necessary to include more source code metrics within
this study. This could lead to find that certain metrics are
related to specific personality traits.

6. CONCLUSIONS AND FUTURE WORK
The source code metrics extracted and used as input to

the machine learning methods were enough to get a close
prediction of several personality traits. Other approaches
can be consulted in [?] which shows other results and ap-
proximations for the PR-SOCO task.

As the PC denotes certain correlation, in this case par-
ticularly with openness, this could mean that the metrics
considered in this work are likely related to the mentioned
trait. However, as there are several other metrics with differ-
ent purposes, like quality, readability, etc., the use of more of
those metrics could improve the prediction. Other metrics
not considered in this study may have better relationships
with the personality traits. This work could be extended by
exploring other metrics an its relationship with each person-
ality trait.

7. REFERENCES
[1] S. Argamon, S. Dhawle, M. Koppel, and J. W.

Pennebaker. Lexical predictors of personality type.
Proceedings of joint annual meeting of the interface
and The Classification Society of North America,
pages 1–16, 2005.

[2] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan,
C. Voss, F. Yamaguchi, and R. Greenstadt.
De-anonymizing Programmers via Code Stylometry.
USENIX sec, pages 255–270, 2015.

[3] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk.
Feature location in source code: A taxonomy and
survey. Journal of software: Evolution and Process,
25(1):53–95, 2013.

1http://www.autoritas.es/prsoco/evaluation/

[4] M. H. Halstead. Elements of Software Science
(Operating and Programming Systems Series). Elsevier
Science Inc., New York, NY, USA, 1977.

[5] D. I. Holmes and F. J. Tweedie. Forensic Stylometry:
A Review of the {CUSUM} Controversy. Revue
Informatique et Statistique dans les Science Humaines,
pages 19–47, 1995.

[6] R. R. Joshi and R. V. Argiddi. Author Identification :
An Approach Based on Style Feature Metrics of
Software Source Codes. 4(4):564–568, 2013.

[7] A. Kuhn, S. Ducasse, and T. Gı̂rba. Semantic
clustering: Identifying topics in source code.
Information and Software Technology, 49(3):230–243,
2007.

[8] R. Malhotra. Empirical Research in Software
Engineering: Concepts, Analysis, and Applications.
CRC Press, 2015.

[9] T. J. McCabe. A complexity measure. IEEE
Transactions on software Engineering, (4):308–320,
1976.

[10] T. Parr. The Definitive ANTLR 4 Reference.
Pragmatic Bookshelf, 2nd edition, 2013.

[11] F. Rangel, F. González, F. Restrepo, M. Montes, and
P. Rosso. Pan at fire: Overview of the pr-soco track on
personality recognition in source code. In Working
notes of FIRE 2016 - Forum for Information Retrieval
Evaluation, Kolkata, India, December 7-10, 2016,
CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[12] V. Y. Shen, S. D. Conte, and H. E. Dunsmore.
Software science revisited: A critical analysis of the
theory and its empirical support. IEEE Transactions
on Software Engineering, (2):155–165, 1983.

[13] J. H. Ward Jr. Hierarchical grouping to optimize an
objective function. Journal of the American statistical
association, 58(301):236–244, 1963.


