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ABSTRACT 
This paper describes our approaches to FIRE (Forum for 
Information Retrieval Evaluation) 2016 Microblog track. The 
main aim of this track was to develop an information retrieval 
system that can identify relevant tweets posted during a disaster 
event. The relevance is measured with respect to some predefined 
topics provide by the track organizers. In this working note we 
have given the description of the system which has taken part in 
this year’s FIRE track as well as has analysed the performance of 
the system.    
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1  INTRODUCTION 
 User written informal microblogs, like tweets, are quite important 
and a big source of real time information. As this microblogs are 
quite informal and doesn’t obey standard vocabulary, thus special 
information retrieval system and recommendation systems are 
needed to retrieve information from this microblogs. To boost the 
retrieval performance of information retrieval system FIRE has 
introduced this track this year [4]. In this task the participant IR 
systems have to find relevant tweets from a set of tweets posted 
during the recent disaster time. The initial dataset consists of 
around 50,000 tweets from twitter that were posted in a recent 
Nepal earthquake. The relevancy of the tweet is measured with 
respect to topics, which will identify different resources that are 
available or required during the disaster time. The organizers 
provide a set of seven topics in the standard TREC format. The 
main challenge of the task is to tackle the nosiness of the tweets 
and at the same time find most relevant tweets. To deal with the 
problem of noise we have applied a preprocessing phase on tweets 
which will remove all noisy data from the tweets. The tweets are 
converted to a bag of words to ease up the scoring process. To 
calculate relevance, we have developed two different scoring and 
raking methods. The topics are optimized by constructing new 
queries based on the previous topics.  

        

2  SYSTEM OVERVIEW 
 

In this section we have described the system architecture for the 
data challenge. The system consists of tweet preprocessing, query 
generation, scoring of tweets and result analysis. 

 

2.1  Brief Overview 
In this task, a set of previously collected tweets (more specifically 
tweet ids) on Nepal Earthquake 2015 was provided. And 
alongside 7 queries were given in the traditional TREC format (an 
XML like format). The goal of this task was to find most relevant 
tweets from the set of tweets based on the queries.   

Our system has mainly four components as follows, 

1) Tweet Preprocessing – As tweets are informally written, 
tweets generally contain a lot of noise and unnecessary 
data. For this reason, in preprocessing stage data filters are 
applied on the tweets to get rid of the unwanted data. 

2) Query Construction – The topics are provided have three 
parts, namely tittle, narration and description. To get more 
relevant tweets, a new set of queries is constructed from 
this given topic.    

3) Scoring of tweets – Once the queries are constructed each 
tweet are scored based on each query. Two different 
approaches have been used in scoring the tweets.  

4) Final filtering – When each tweet gets a score against 
each topic, a heuristic threshold has been set to get good 
quality tweets.  

 

2.2 Tweet Preprocessing 
The following steps have been taken to preprocess the tweet text.  

1) Punctuation removal – Punctuations are removed from 
each tweet. We have not given any extra importance to 
hash tags, all ‘#’ symbols are also removed. 

2) Case folding – All the capital letters in the tweets are 
converted to small letters 

3) Stop word removal – All commonly used English words 
which do not have much significance on the subject 
matter of the tweet but are used only for semantic reasons 
are removed. A list of top most frequently used words 
(around 500 words) are used as stop word list. And from 
the tweet the words that are present in the stop word list 
are removed. 

4) Non ASCII character – In addition, we have removed all 
non ASCII characters which come to tweet due to the use 
of emoticons and other symbol 

5) Constructing bag of word – Each tweet is then splited 
into words and are converted to a set of words. Each set 
represents the collection of the distinct word that are 
present in the tweet. Each bag of word is identified by the 
tweet id of the tweet which is unique to the tweet and can 
be used to track it in next steps. 

 



2.3 Query Construction 
Topics are made of three fields, namely the title, description and 
narratives. Titles contain several three or four keys, while 
descriptions are one-sentence long statements of the users’ 
information needs; narratives are paragraph-length descriptions of 
the tweets that the users want to receive and are the long 
description. Each topic is assigned one topic id which can be used 
to uniquely specify one topic in submission stage. Query 
construction part consists of two different phases described as 
follows: 

1) Keyword Extraction – As nouns in a sentence holds most 
of the information, we choose nouns in the topics as the 
keywords for the query. We have used Stanford Part-Of-
Speech Tagger[1] to label different parts-of-speech first 
and then collected words which have been identified as 
Noun. 

2) Giving weight to keywords – As all the topics can be 
broadly classified into two groups based on if it wants to 
retrieve tweets on ‘availability’ or ‘requirement’. For this 
reason, the words like ‘availability’ or ‘requirement’ have 
been assigned more weight than the other key words in the 
topics.  

Each query can be expressed as a set of keywords where each 
keyword is assigned a definite weight and each query is assigned 
the topic ids to identify each query in later stage. 
 

2.4 Scoring 
After construction of queries, each bag of words corresponding to 
each tweet is assigned a score with respect to a query. We have 
used two different scoring techniques for two separate runs. 

Method–1: Co-occurrence based Similarity 
This method is based on co-occurrence based similarity measure 
[2]. This method tries to find out how many words from the query 
have also occurred in the tweet and scored the tweet based on that. 
For a given tweet T = {t 1, t2 , ..., t n } and a given query Q = {q1, 
q2 , ..., qn } the score of the tweet is calculated as follows: 

Score (T , Q) = | intersection of T ,Q | / | Q | , where | Q | 
denotes number of elements in set Q. 

That is this score measure the fractions of common words in a 
tweet and a query. The higher the fraction, higher the probability 
that the tweet is relevant to the query. 
 

Method–2: WordNet based Semantic 
Similarity 

The previous method is generally based on the co-occurrence 
similarity which does not concern about the meaning wise 
similarity of two words.  This problem can be solved by 
WordNet[3] based approach. WordNet is a lexical database of 
English. Each word in WordNet has a set of cognitive synonyms 
called synsets. Two find the similarity between two words we can 
calculate the similarity between two synsets.  

For a given tweet T = {t1, t2 , ..., tn } and a given query Q = {q1, 
q2 , ..., qn } the score of the tweet is calculated as follows: 
 

1) For each t i and q j we have first found the synsets of two 
words say S1 and S2 respectively. Now for each term in 
S1 and each term in S2 we have calculated wup 

similarity.1 After this all wup score is added up and 
normalized. This normalized score denotes the similarity 
value between t i and q j 

2) We iterate through all the terms in tweets and queries and 
summed up all the similarity score of each pairs and 
normalize it. 

3) This normalize score is the final score of the tweet respect 
to that particular query.    

 
2.5 Final Filtering 
After scoring the tweets according to relevance to each 
topic, we need to choose most relevant tweets for a given 
topic. For this reason, we have taken a heuristically set 
threshold based filtering method to choose most relevant 
tweets. The threshold has been set to 0.25. That is the 
tweets which have a score greater than 0.25 are considered 
as relevant and are submitted. All other tweets have been 
discarded.   
 

3 RESULT ANALYSIS 
Table-1 shows the result of our two submitted runs. The run 
acquired from method-1 is tagged as “ss” and then run acquired 
from method-2 is tagged as “ws”.  The runs have been evaluated 
based ground truth obtained by the organizers. Different metrics 
like Precision@20, Recal@1000, MAP@10000 and MAP have 
been used to evaluate the runs.   
         

Run Id Precision 
@20 

Recall 
@1000 

MAP 
@1000 

Overall 
MAP 

trish_iiest_ss 0.0929 0.1407 0.0140 0.0203 

trish_iiest_ws 0.0786 0.0618 0.0032 0.0099 

 
            Table-1 
As it can be clearly seen from the result, though the second 
method uses a more deep similarity measure than the first 
approach the first approach performs better than the second one. 
The most probable reason for this is due to lack of grammar and 
spelling wise correctness of tweets. Most of the tweets are 
informally written microblogs, so using a standard English 
dictionary based filters and standard semantics based methods are 
not practically that much effective. While much simpler co-
occurrence based similarity measure outperforms it on the basis of 
performance and running time and cost. 
 

4 CONCLUSION   
In this working note, we have presented a brief discussion on our 
approach to FIRE 2016 microblog task. We have observed that 
traditional dictionary and vocabulary based filtering techniques 
are very inefficient for informally written documents like tweets. 
The relatively simpler co-occurrence based methods suits well for 
future work that also includes finding new filtering techniques and 
parameters to tackle such informally written documents like 
tweets.      
                                                                    
1http://search.cpan.org/dist/WordNet-Similarity/lib/WordNet/Similarity/wup.pm 
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