
Exploiting Named Entity Mentions Towards Code Mixed IR
: Working Notes for the UB system submission for

MSIR@FIRE’16

Nikhil Londhe
SUNY Buffalo

nikhillo@buffalo.edu

Rohini K. Srihari
SUNY Buffalo

rohini@buffalo.edu

ABSTRACT
A sizable percentage of online user generated content is sus-
ceptible to code switching and code mixing owing to a vari-
ety of reasons. Thus, an expected consequence is that adhoc
user queries on such data are also inherently code mixed.
This paper thus presents our solution for a similar scenario
: information retrieval on code mixed Hindi-English tweets.
We explore techniques in information extraction, clustering
and query expansion as part of this work and present our
results on the test dataset. Our system achieved a MAP of
0.0217 on the test set and placed third on the rankings.

CCS Concepts
•Information systems→Multilingual and cross-lingual
retrieval; •Computing methodologies→Natural lan-
guage processing;

1. INTRODUCTION
A large number of languages like Russian, Hindi, Arabic,

etc.̇ that although have indigenous writing scripts, are of-
ten expressed in the Roman script in online communication
due a variety of socio-cultural reasons. Furthermore, it is
not uncommon to see multilingual speakers switching be-
tween different languages when expressing themselves in an
informal setting like social media. Hence, a large percentage
of user generated content, typically on social media is code
switched or code mixed, i.e., contains content in more than
one language that may or may not involve multiple writing
systems.

Given the nature of the content, it is thus not unexpected
to see adhoc user queries on such data to be also code mixed.
For example, consider Table 1, that lists some sample queries
and sample target tweets that illustrate the given scenario.
The given problem was more formally introduced recently
by [4]. The second sub-task organized as part of the Mixed
Script Information Retrieval track [2] deals with the same
problem, described in detail as follows.

Given a topic T , specified using a name, description and
narrative; a set of associated English-Hindi code mixed tweets
tT ; and a set of similarly code mixed queries QT against the
topic, the task involves returning the top k results for every
such query. A summary of the training dataset is presented
in Table 2. Some of the key challenges thus, can be enumer-
ated as:

1. Short and comparable document lengths : Judg-
ing relevance on curated tweets can be especially hard
given that not only the documents are short in length,

thus, giving little context to work with but also that
all documents are comparable in length and are defi-
nitely somewhat relevant to the query / topic to begin
with.

2. Mixed language data : Given that both the tweets
themselves as well as the queries are in one or more
languages, some sort of a cross lingual indexing and
querying scheme must be employed to ensure relevant
results.

3. Spelling variants : Specifically applicable given that
one of the languages (Hindi) is expressed in roman
script via transliteration. Given that no standard-
ized spelling scheme exists or is widely used, the same
words can appear with different spellings.

.
The rest of this paper is organized as follows. We begin by

taking a closer look at the training dataset in Section 2 and
draw some inferences with regards to the data and queries
that act as guiding principles for the different techniques
used. Then in Section 3, we describe the different data pro-
cessing, indexing and query processing techniques that we
tried out as part of our initial experiments. Then in Sec-
tion 4, we provide details of the runs we submitted and the
exact system composition for each run. Finally, in Section 5,
we present our system performance on the test dataset and
present an analysis of the results. We then conclude by dis-
cussing future work & potential system improvements.

2. TRAINING DATASET
The training dataset can be summarized as follows:

1. Topics: Total of 10 topics

2. Queries: Total of 23 queries, ranging from 1 to 4 per
topic

3. Tweets: Total of 6142 tweets split between topics/queries
and ranging from 34 (Topic 9 / Q 21) to 3531 (Topic
1 / Q 4)

Based on the question types and available data, we make
the following assumptions / observations:

1. Each query is an informational query about some Named
Entity (NE)

2. Every query can also be completely described by a
triple as A[-rel-B] where [xx] indicates an optional
clause

3. At least one of A or B is a Named Entity

S.no Sample Query Example Tweets
1 delhi me election - rohit sharma ko dilli ka chunav ladwao !! newsmaker of the day
2 india ki haar #aapkasting thanks india ki haar ka dukh bhula diya tum logo ne
3 nirbhayaa ka rapist asharam bapu ka kehna hai mujhe nabalig samajhkar hi chod do . #nirbhayarapistout

Table 1: Code Mixed Tweets and Queries

Topic Num Num Tweets Vocabulary % OOV
1 3894 12548 66.87
2 582 3356 60.58
3 82 690 60.86
4 54 483 56.78
5 410 2556 67.03
6 532 2641 59.59
7 51 487 66.15
8 104 901 62.55
9 32 307 55.17
10 425 1900 57.65

Table 2: Training Dataset summary

4. When not a NE, A or B, are most likely a noun

5. NEs would usually be represented by a fixed number
of variants

6. Nouns on the other hand, could be represented by any
number of synonyms that could be drawn from both
languages (chunaav versus election for example)

7. The ordering of the clause (Noun-rel-NE versus NE-
rel-Noun) is dependent on the underlying language
(chunaav in delhi versus dilli mein election)

Apart from the training dataset, no relevance judgments
were provided, binary or nuanced. The narrative with each
topic provided some insight into what was considered rel-
evant and non-relevant, but there were no clues to differ-
entiate between two tweets given they both referenced the
same number of query tokens. Thus, we need to derive some
notion of aboutness or information content of each tweet to
determine relevance. Thus, a possible search strategy can
be formulated as:

1. Determine NE or NEs within the query and the tweets
- this could be a fixed list or processed from Wikipedia
or other Knowledge Bases (KBs)

2. Find tweets that match as many tokens or as much of
the remaining query as possible

3. Find some proxy for tweet aboutness and use it to
determine relevance

Using these three guiding principles, we now present the
different techniques we tried out and how they contributed
to our final system run.

3. INDEXING EXPERIMENTS
In this section, we describe the different experiments we

conducted and the various system components that comprise
our final runs.

3.1 Apache Solr
We used Apache Solr - an open source, scalable text search

engine written in Java and built over Apache Lucene as the
back-end for our system. It is fairly straightforward to index
any sort of data in Solr after defining a schema. We present

Figure 1: Examples of extracted NEs

our full schema definition in Table 3. Thus, apart from the
data already provided, we augment it using two fields : NE
(see Section 3.2) and cluster id (see Section 3.3).

3.2 NE tagger
We implemented the NE tagger in two parts : (a) a regex

based extractor that generates a list of known NEs and (b)
a simple string matching based tagger that are explained
as follows. For the NE extractor, we used the topic de-
scription files and automatically extracted longest possible
sequence of tokens wherein the sequence is delineated by a
token that begins with a capital letter. We then sorted the
list extracted as thus and eliminated duplicates and sub-
sequences. However, for every sub-sequence that we elimi-
nated, we tagged the parent entity as being capable of being
present as a sub-string. For example, the entity Narendra
Modi could be present as a whole or as individual tokens
namely Narendra or Modi. At the end of this step, we
had thus generated a list of NEs (of interest at least) and
a boolean flag indicating sub-sequence occurrence. A snap-
shot of the extracted lists from the training dataset is shown
in Figure 1.

The actual tagger followed a similar philosophy where we
started with the above list and tagged each tweet as follows.
We simply created a mapping from token to entity, wherein
the token was either defined as the full entity or any of its
sub-tokens if it could be present partially. For example, in
the above case, for Narendra Modi, we created two mappings
as Narendra → Narendra Modi and Modi → Narendra Modi.
For each tweet, we then performed a look-up and added the
matching NE to the index if a match was found. Further,
we also added a Solr plugin for the modified Levenshtein
distance [7] to match NEs with spelling variants occurring
due to transliteration across the two languages.

3.3 Clustering
Finally, we attempted to mine cross-lingual equivalents

and spelling variants for different words. Much akin to the
work of query expansion by [5], we first explored the usage

S.no Field name Type Description
1 id String Unique identifier for each tweet, UUID generated from raw text
2 text Text Raw text for the tweet, stored after tokenization and minimal processing
3 qnum Integer Query Number
4 topicid Integer Topic Number
5 NE Text List of Named Entities referenced within this tweet
6 cluster id Integer Union of cluster ids for all constituent tokens within the tweet

Table 3: Solr Schema definition

Figure 2: Examples of generated synonyms

of Brown Clustering [3], a hierarchical clustering algorithm
that exploits word distributional similarities. We used the
freely available python implementation [6] and tested with
a few cluster sizes. We found a value of 100 to be a reason-
able balance between unrelated words (10-50) to fragmented
clusters (500-1000). We also found that for the given set-
ting, words with similar spellings (e.g. jaise, jaisey, jaisay)
or inflectional variants (e.g. ka, ke, ko, etc.) were assigned
to the same cluster. As an unintended side-effect however,
the clustering also assigned similarly spelled English words
with the same POS labels (i.e. verbs like cooking, cooling

etc)̇ to the same cluster.
Thus, we automatically generated a synonym list using the

above results using a two step process. First, we removed
all words that were found in a standard English dictionary.
This was done to remove any false positives. Secondly, we
deemed a set of words to be equivalents if their edit distance
was less than a pre-determined threshold of three. The said
threshold was manually determined by trial and error over a
small test set. All such matching pairs thus generated were
then combined into a single synonym file as partially shown
in Figure 2.

Having described the individual components that com-
prise our system, we now turn our attention to presenting
the overall system in the following section.

4. SYSTEM DESCRIPTION
The basic system architecture is shown in Figure 3. It in-

cludes the following components as introduced earlier: Solr
(and its associated index), Query Processor (that includes
NE tagger) and the extracted synonyms. Two additional
inputs are (a) the search configuration that defines the dif-

Figure 3: System Diagram

ferent weights, choice of scoring mechanism etc.̇ and (b)
the topic narrative files that are additionally ingested as de-
scribed below. Note that the diagram shows three different
configurations, additive in nature for each of the three runs
submitted.

Before we describe the three runs, we present some addi-
tional details on the query processor and Solr configuration.
In continuation with the schema as presented in Table 3,
given: - Query Q of n tokens as q1, q2, ... , qn - Pre-
determined query weights Wf = w1, w2, ... , wk for fields
f1, f2, ... , fk as stored within the configuration

The processor then partitions or generates field level parses
of the query as Qf = qf1 , qf2 , ... , qfk and passes the final
query to Solr as Qf ·Wf .

Secondly, as mentioned in Section 1, we also needed to fig-
ure out some notion of relevance. Given the lack of any ad-
ditional information, we chose a simple voting based scheme.
Solr supports a variety of different ranking models and thus,
we configured four distinct Solr instances each with a differ-
ent relevance scheme as enumerated below:

1. Lucene Similarity: This is an implementation of the
classic tf-idf similarity that uses

√
tf and 1+ log(df

N+1
)

as normalization factors

2. Okapi similarity: A probabilistic relevance model as
introduced by [8]

3. Language model: Uses Jelinek-Mercer smoothing on
a language model as proposed by [9]

4. DFR similarity: The Divergence From Randomness
models as suggested by [1]. We used the Inverse Ex-
pected document frequency (I(ne)) model with Lapla-
cian smoothing and Zipfian normalization in our ex-
periments.

For the first three models, we used the default settings
and for DFR, we manually experimented with a few queries
and returned results to settle on the selected model. For a
given query, the system executes it in parallel on the four

Query no Topic Run 1 Run 2 Run 3 Avg MAP
1

1

0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0
5

2

0.0 0.0 0.0 0.0
6 0.003 0.003 0.003 0.003
7 0.177 0.1 0.1 0.126
8 0.019 0.008 0.019 0.015
9

3

0.0 0.0 0.0 0.0
10 0.007 0.022 0.007 0.012
11 0.05 0.05 0.05 0.05
12 0.004 0.009 0.004 0.006
Average 0.0217 0.016 0.0152 0.0176

Table 4: Test Dataset Summary and Results

subsystems, normalizes the returned scores and combines
the results into a single ranked list.

We enumerate the three runs as follows:

1. Run 1 - Named Entity boosts : In the first run,
we performed two levels of query matching - one was
boosting the documents based on their NE matches
from the query, i.e., the query was parsed to extract
NEs and each document (tweet) that matched the given
NE was provided a small numeric boost. The sec-
ond level of boosting utilized phrase matching, i.e.,
documents that more closely matched the input query
phrase were ranked higher than those that did not.

2. Run 2 - Synonym expansion: We merely expanded
the given query based on these synonyms over the
ranking mechanism presented for Run 1.

3. Run 3 - Narrative based weighting: For the final
run, we extracted NEs from the provided topic nar-
ratives and assigned positive or negative boosts based
on the associated word usage “relevant” and “not rele-
vant”. These additional weights were applied over the
scheme presented in Run 2.

5. RESULTS & CONCLUSIONS
We present a summary of the test dataset and the results

from each of the runs in Table 4. We make the following
observations:

• Overall, the best system performance was our baseline
system. Synonym expansion performs second best and
narrative based weighting performs the worst.

• In hindsight, the techniques used by us perhaps im-
proved recall at the cost of precision

• The only queries where synonym expansion works bet-
ter than not having any synonyms is perhaps where
there is a spelling mismatch between query and text
(queries 10 and 12).

• Thus, we could have used “pessimistic” expansion -
only use it if adequate results not available.

• When multiple NEs are present (queries 1-3), our sys-
tem gets confused and returns non relevant results.

As part of future improvements, we thus need define a
better notion of relevance and aboutness at a tweet level,
specifically ascertain the information content of each tweet.
In summary, our work showed three important results : (a)
Named Entities have a very important role in IR on tweets

and system performance could be improved by using more
sophisticated NE taggers (b) simple clustering on topic wise
tweets can give considerable insight into the constituent words
- enough to derive spelling and inflectional variants and
(c) in the given setting, precision is very sensitive to small
changes and hence, typical recall improving techniques should
be used as a “last resort”.

6. REFERENCES
[1] G. Amati, C. Joost, and V. Rijsbergen. Probabilistic

models for information retrieval based on divergence
from randomness. 2003.

[2] S. Banerjee, K. Chakma, S. K. Naskar, A. Das,
P. Rosso, S. Bandyopadhyay, and M. Choudhury.
Overview of the Mixed Script Information Retrieval
(MSIR) at FIRE. In Working notes of FIRE 2016 -
Forum for Information Retrieval Evaluation, Kolkata,
India, December 7-10, 2016, CEUR Workshop
Proceedings. CEUR-WS.org, 2016.

[3] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D.
Pietra, and J. C. Lai. Class-based n-gram models of
natural language. Computational linguistics,
18(4):467–479, 1992.

[4] K. Chakma and A. Das. Cmir: A corpus for evaluation
of code mixed information retrieval of hindi-english
tweets. In International Conference on Intelligent Text
Processing and Computational Linguistics. Springer,
2016.

[5] P. Gupta, K. Bali, R. E. Banchs, M. Choudhury, and
P. Rosso. Query expansion for mixed-script information
retrieval. In Proceedings of the 37th international ACM
SIGIR conference on Research & development in
information retrieval, pages 677–686. ACM, 2014.

[6] P. Liang. Semi-supervised learning for natural language.
PhD thesis, Massachusetts Institute of Technology,
2005.

[7] N. Londhe, V. Gopalakrishnan, R. K. Srihari, and
A. Zhang. Mess: A multilingual error based string
similarity measure for transliterated name variants. In
Proceedings of the 7th Forum for Information Retrieval
Evaluation, pages 47–50. ACM, 2015.

[8] S. E. Robertson, S. Walker, S. Jones, M. M.
Hancock-Beaulieu, M. Gatford, et al. Okapi at trec-3.
NIST SPECIAL PUBLICATION SP, 109:109, 1995.

[9] C. Zhai and J. Lafferty. A study of smoothing methods
for language models applied to ad hoc information
retrieval. In Proceedings of the 24th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 334–342.
ACM, 2001.

