
BITS_PILANI@DPIL-FIRE2016:Paraphrase Detection in
Hindi Language using Syntactic Features of Phrase

Rupal Bhargava1 Anushka Baoni2 Harshit Jain3

Yashvardhan Sharma4

WiSoc Lab, Department of Computer Science
Birla Institute of Technology and Science, Pilani Campus

Pilani-333031

{rupal.bhargava1, f20136832, f20132893,yash4} @pilani.bits-pilani.ac.in

ABSTRACT
Paraphrasing means expressing or conveying the same mean-
ing or essence of a sentence or text using different words or
rearrangement of words. Paraphrase detection is a chal-
lenge, especially in Indian languages like Hindi, because it is
very essential to understand the semantics of the language.
Detecting paraphrases is very relevant in real life because
it has a lot of importance in applications like Information
Retrieval, Extraction and Text Summarization. This paper
focuses on using Machine Learning classification techniques
for detecting paraphrases in Hindi language for the DPIL
Task in Fire 2016. A feature vector based approach has been
used for detecting paraphrases. The task involves checking
whether a given pair of sentences conveys the same informa-
tion and meaning even if they are written in different forms.
Given a pair of sentences in Hindi, the proposed technique
labels whether the pair of sentences are Paraphrases (P),
Semi-Paraphrases (SP) or Not Paraphrases (NP).

CCS Concepts
•Information systems → Summarization; Information
integration; Data analytics; Data mining;

Keywords
Paraphrase Detection, Text Summarization, Classification,
Machine Learning

1. INTRODUCTION
The word ’paraphrase’ means rephrasing or restating the

meaning of a paragraph or text using some other words or
vocabulary. Paraphrase detection is an important task for
many natural language processing applications. Some of the
applications involve question-answering systems, machine
translation systems, systems used for plagiarism checks, find-
ing similarities between sentences, text summarizers, etc.
Plagiarized texts usually copy phrases as it is or replace
some words with similar words. Paraphrase detection will
help in detecting plagiarized work and ensure that the doc-
uments written are unique and not copied. Question An-
swering system makes use of paraphrases to find the correct
answers to asked questions. A lot of work has been done
in paraphrase detection for English language. However for

Hindi and other Indian languages, not much work has been
done and there is a lot of scope for research. The most com-
mon way of detecting paraphrases is modeling the problem
as a classification problem. This paper implements a super-
vised classification model for detecting Paraphrases. POS
Tags, Stems of Words and Sound-ex codes corresponding to
the words in sentences are used as features.

The rest of the paper is organized as follows: Section 2
discusses related work in the area of Paraphrase Detection.
Section 3 presents the analysis of the Data set provided by
DPIL task organizers. Section 4 discusses the methodology
used and Section 5 explains the proposed algorithm. Section
6 gives a detailed analysis of the results obtained and error
analysis. Section 7 presents the conclusion and possible fu-
ture work.

2. RELATED WORK
Paraphrase detection has been a major area of research

in the recent times because of its significance in many ar-
eas of Natural Language Processing. Few of the approaches
adopted for English language are mentioned in this section.
Huang et al. [4] has proposed an unsupervised recursive
auto-encoder architecture for paraphrase detection. The re-
cursive auto-encoder uses tanh as the sigmoid-like activation
function and gives the representation of sentences along with
their sub-phrases. These representations are then used for
paraphrase detection. To extract the same number of fea-
tures for different sentence pairs, two approaches are used,
aggregating representations to form a single feature and us-
ing a similarity matrix approach. With first approach they
achieved 66.49% accuracy while with the second method ac-
curacy of 68.06% was achieved . Kotti et al.[10] also pro-
posed an unsupervised feature learning technique with Re-
cursive Auto-encoders (RAE) for detecting paraphrases on
twitter. In their proposed technique they first converted
data to parse trees using phrase-structure parser and then
passed it to the RAE for training. The vector generated from
the RAE is converted to form a similarity matrix and thus
paraphrase detection is done using this matrix. Fernando et
al.[3] presented an algorithm using word similarities whereas
Ngoc et al. [11] proposed simple features like n-grams, edit
distance scores, METEOR word alignment, BLEU for de-
tecting paraphrases and semantic similarity tasks on twitter



data. Similarly, analysis of various similarity measures like
sentence-level edit distance measure, simple n-gram overlap
measure, exclusive longest common prefix (LCP) n-gram
measure, BLEU measure and sumo measure along with a
paraphrase detection based on abductive machine learning
has been proposed in [2]. Sethi et al. [9] proposed a tech-
nique for paraphrasing or re-framing Hindi sentences using
NLP. The main steps involved dividing the paragraph into
sentences, tokenizing the sentences into words, applying re-
framing rules and then combining the results to form new
paragraphs. Malakasiotis et al. [5] proposed three methods
for paraphrase detection using string similarity measures.

3. DATA ANALYSIS
The data-set provided by the task organizers [1] is from

newspaper domain and contains pairs of sentences. There
are two Subtasks and each Subtask has its own training and
testing data.

3.1 SubTask 1
The pairs of sentences in the Training Data set contains

1000 ’Paraphrases’ (P) and 1500 ’Not Paraphrases’ (NP).
Test Data set for SubTask 1 consisted of 900 pairs for Hindi
Language.The number of paraphrases with common words
versus the number of common words is shown in Figure 1.
For e.g A point (5,72) represents that there are 72 such para-
phrases which have five common words.

Figure 1: Data Analysis of Paraphrase for SubTask
1

3.2 SubTask 2
For Subtask 2,Training Data set consisted of 1000 pairs

of sentences that are Paraphrases (P), 1000 pairs that are
Semi-Paraphrases (SP) and 1500 that are Not Paraphrases
(NP). For Test Data set, 1400 pairs of Hindi sentences were
provided.The number of Paraphrases and Semi-Paraphrases
with common words versus the number of common words is
shown in Figure 2.

4. PROPOSED TECHNIQUE
The proposed work has been divided in multiple phases

as shown in Figure 3. Initially pre-processing of the data

Figure 2: Data Analysis of Paraphrase and Semi
Paraphrase for SubTask 2

is done which involves converting the xml format Data Set
into csv format so that the data can be read from the csv
file and processed for extracting features.

Second phase processes the training data to extract im-
portant features from the data so that the proposed classifi-
cation model could be trained. The following three features
were extracted for the proposed training model:

1. POS Tags: POS (Part-Of-Speech) Tags are labels
that are given to words to identify the part of speech or
lexical categories of words. The eight parts of speech
are: the verb, the noun, the pronoun, the adjective,
the adverb, the preposition, the conjunction, and the
interjection. Words that have the same POS Tags
play similar roles in the grammatical structure of sen-
tences. For obtaining the respective POS tags for the
Hindi words, RDRPOSTagger1 [6] was used. The in-
put passed to the RDRPOSTagger contains the pairs of
sentences and the output generated by RDRPOSTag-
ger had the respective POS Tags next to each word.
Only the POS Tags corresponding to each word in the
sentence are extracted from the output and appended
to form a string thus obtaining POS Tags for each sen-
tence in the data set.

2. Stem of the words: Stemming is a process of ex-
tracting the ’word stem’ or ’root’ of the word. For
extracting the stem of the Hindi words, a Hindi stem-
mer2 was used which implements the suffix-stripping
algorithm described in [8]. A string for each sentence
in the data set with the corresponding stems of the
Hindi words is then obtained.

3. Soundex codes: Soundex is a phonetic algorithm
for indexing names by sound as pronounced in En-
glish. Soundex3 provides an implementation of the
modified version of soundex algorithm for Indian lan-
guages including Hindi. This package is used for the

1https://rdrpostagger.sourceforge.net
2http://research.variancia.com/hindi stemmer/
3https://pypi.python.org/pypi/soundex/



corresponding soundex codes for the words in the sen-
tences. Using soundex codes for words in the sentence,
a string comprising of soundex codes corresponding to
each sentence is generated.

After extracting these three features, the similarity scores
corresponding to each feature has been calculated. The
python package, fuzzywuzzy 4 is used to calculate the simi-
larity scores. Each similarity score lies in the range [0,1] and
uses Levenshtein Distance to calculate the differences be-
tween string sequences. The Levenshtein distance between
two words is the minimum number of single-character ed-
its (i.e. insertions, deletions or substitutions) required to
change one word into the other. The similarity score is cal-
culated for each pair of POS Tags sentences (feature 1),
sentences with stem of the words (feature 2) and sentences
with soundex codes corresponding to the Hindi words (fea-
ture 3) hence creating a feature vector with the similarity
scores corresponding to the sentence pair.

After feature vector generation, different machine learn-
ing techniques are used for training so that the best model
for predicting the labels could be chosen after analysis. For
SubTask 1 and SubTask 2, Logistic Regression, Naive Bayes,
Random Forest Classifier and Support Vector Machine were
used for classification. These models were implemented us-
ing the python library sklearn [7].

5. ALGORITHM
Algorithm 1 takes Paraphrases as input where each Para-

phrase(P[i]) contains two Hindi sentences (P[i].Sentence)and
outputs a Label for its corresponding Paraphrases. The
functions PosTags, WordStem and Soundex, each take Sen-
tences of Paraphrase as its parameter and return the array of
corresponding POS Tagged Sentences, WordStem Sentences
and Sentences with Soundex Codes respectively. Similari-
tyScore generates the similarity score for each of its input
array. SimScore1, SimScore2 and SimScore3 are the indi-
vidual vectors for the three features, which are then passed
to the CreateVector function to form the final FeatureVec-
tor. Classifier function takes the FeatureVector as input,
assigns labels to the Paraphrases and then returns a La-
belVector. Classifier function implements different models
(Logistic Regression, Naive Bayes, SVM and Random For-
est) for predicting labels.

6. EXPERIMENTS AND RESULTS

6.1 Evaluation and Discussion
To test the accuracy and F-measure, data set provided by

the task organizer was divided into a ratio of 75% and 25%
for training and testing respectively. The results (Accuracy
and F-Measure) were evaluated using sklearn [7] for the dif-
ferent models (Logistic Regression, Naive Bayes, SVM and
Random Forest). Results obtained for SubTask 1 is shown
in Figure4. Proposed system gave an accuracy of 90.4% and
F-measure 87.6% for Logistic Regression followed by Naive
Bayes and Random Forest, both with 89.5% accuracy. For
binary classification problems, logistic regression gives the
best results in most cases because it assigns labels by cal-
culating odds ratio and then applies a non-linear log trans-
formation. Moreover, the performance can be fine-tuned

4https://pypi.python.org/pypi/fuzzywuzzy

Figure 3: Block diagram for Paraphrase Detection

by changing and adjusting parameters in the functions pro-
vided by sklearn [7] for Logistic Regression. As SubTask 1
was a binary classification problem hence results obtained
via Logistic Regression were better than the others. On
the other hand, SubTask 2 was a multi-class classification
problem (Labels-P, NP or SP). Hence in this case, Random
Forest gave the best results with 69.2% accuracy and 68.8%
F-measure followed by Naive Bayes (64.6% accuracy and
62.4% F-measure) as shown in Figure 5. Random Forest
calculates labels by using sub samples of the data set and
uses averaging to improve the accuracy whereas Naive Bayes
uses a conditional probability approach for assigning labels.

Hence runs submitted for SubTask 1 used Logistic Re-
gression classifier and SubTask 2 used Random Forest. As
per the final results declared by the Task organizers, the
proposed technique was ranked third when compared with
other teams with Accuracy of 0.897 and F-measure of 0.89
as shown in Figure 6 and 7 respectively for SubTask 1. In
SubTask 2, the proposed technique is ranked fifth with Ac-
curacy and F-measure of 0.717 and 0.712 as shown in Figure
8 and Figure 9 respectively.

6.2 Error Analysis
Few errors that could have attributed to the decrease in

evaluation measures can be-



Algorithm 1 Algorithm for Detecting paraphrases

1: Input: Paraphrase P, where all paraphrases have a
unique id and contains two sentences (Hindi)

2: Output: LabelVector gives the corresponding labels for
the paraphrases. Depending upon the task it can have
value of P, NP and SP

3: Initialization: SimScore1[]=0,SimScore2[]=0,SimScore3[]=0
4: for i=0 to P.Count do
5: Pos[]=PosTags (P[i].Sentence)
6: Stem[]=WordStem (P[i].Sentence)
7: Sound[]=Soundex (P[i].Sentence)
8: SimScore1.append (SimilarityScore(Pos[]))
9: SimScore2.append (SimilarityScore(Stem[]))

10: SimScore3.append (SimilarityScore(Sound[]))
11: end for
12: FeatureVector=CreateVector(SimScore1, SimScore2,

SimScore3)
13: LabelVector=Classifier(FeatureVector)

Figure 4: Results for Subtask 1 using different clas-
sifier for proposed system

1. RDRPOS Tagger- Nguyen et al.[6] states that the RDR-
POSTagger achieves a very competitive accuracy in
comparison to the state-of-the-art results. But a dif-
ferent Hindi POS Tagger can also be used to improve
this phase. Also RDRPOSTagger can be combined
with an external initial tagger to increase its accuracy.

2. Similarly, the Hindi Stemmer used might have incor-
rectly returned the stem words, which can be a reason
for wrongly classified Paraphrases. The algorithm for
extracting the root words can be improved further to
better the results.

3. Other factors that could have led to errors are accuracy
of soundex library and similarity measure used.

7. CONCLUSIONS AND FUTURE WORK
In this paper, a feature vector based approach with three

features (POS Tags, Word Stems and Soundex codes) is dis-
cussed for paraphrase detection of Hindi Language. Leven-
shtein Distance was used to calculate the similarity measure.
Proposed system achieved accuracy of 89.7% and F-measure

Figure 5: Results for Subtask 2 using different clas-
sifier for proposed system

Figure 6: Accuracy comparison for all teams in Sub-
Task 1

of 89% for SubTask 1 using Logistic Regression. For Sub-
Task 2, proposed system gave an accuracy of 71.7% and
F-measure of 71.2% using Random Forest Classifier as eval-
uated by task organizers. The model accuracy can be fur-
ther improved by incorporating more features like calculat-
ing similarity between two strings having only nouns of the
original sentences as identified by the POS Tagger, replac-
ing the nouns by their soundex codes or their stems. Only
verbs of the original sentences can also be used to obtain fea-
tures where the verbs are replaced by their soundex codes
or stems. The current model has been trained on the data
set provided by task organizers. We can incorporate more
data to extend the model. Using an ensemble classifier and
combining different models like Decision Trees, Naive Bayes,
SVM, etc. can be used for predicting labels that may further
improve results. Moreover the proposed technique only uses
syntactic features, semantic features can be incorporated for
improvising the algorithm.



Figure 7: F-Measure comparison for all teams in
SubTask 1

Figure 8: Accuracy comparison for all teams in Sub-
Task 2

References
[1] M. Anand Kumar, S. Shivkaran, B. Kavirajan, and

K. P. Soman. DPIL@FIRE2016: Overview of shared
task on detecting paraphrases in indian languages. In
Working notes of FIRE 2016 - Forum for Information
Retrieval Evaluation, Kolkata, India, December 7-10,
2016, CEUR Workshop Proceedings. CEUR-WS.org,
2016.

[2] E.-S. M. El-Alfy, R. E. Abdel-Aal, W. G. Al-Khatib,
and F. Alvi. Boosting paraphrase detection through
textual similarity metrics with abductive networks. Ap-
plied Soft Computing, 26:444–453, 2015.

[3] S. Fernando and M. Stevenson. A semantic similarity
approach to paraphrase detection. In Proceedings of the
11th Annual Research Colloquium of the UK Special In-
terest Group for Computational Linguistics, pages 45–
52. Citeseer, 2008.

[4] E. Huang. Paraphrase detection using recur-

Figure 9: F-Measure comparison for all teams in
SubTask 2

sive autoencoder. Source:[http://nlp. stanford.
edu/courses/cs224n/2011/reports/ehhuang. pdf], 2011.

[5] P. Malakasiotis. Paraphrase recognition using machine
learning to combine similarity measures. In Proceedings
of the ACL-IJCNLP 2009 Student Research Workshop,
pages 27–35. Association for Computational Linguis-
tics, 2009.

[6] D. Q. Nguyen, D. D. P. Dai Quoc Nguyen, and S. B.
Pham. Rdrpostagger: A ripple down rules-based part-
of-speech tagger. In Proceedings of the Demonstra-
tions at the 14th Conference of the European Chapter of
the Association for Computational Linguistics, EACL
2014, pages 17–20. Citeseer, 2014.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of Machine Learning Re-
search, 12(Oct):2825–2830, 2011.

[8] A. Ramanathan and D. D. Rao. A lightweight stemmer
for hindi. In the Proceedings of EACL, 2003.

[9] N. Sethi, P. Agrawal, V. Madaan, and S. K. Singh.
A novel approach to paraphrase hindi sentences using
natural language processing. Indian Journal of Science
and Technology, 9(28), 2016.

[10] M. S. Sundaram, K. Madasamy, and S. K. Padannayil.
: Paraphrase detection for twitter using unsupervised
feature learning with recursive autoencoders. In Work-
shop Proceedings of the International Workshop on Se-
mantic Evaluation 2015 (Sem Eval-2015), Denver, Col-
orado, US, pages 45–50. Citeseer, 2009.

[11] N. P. A. Vo, S. Magnolini, and O. Popescu. Paraphrase
identification and semantic similarity in twitter with
simple features. In The 3rd International Workshop on
Natural Language Processing for Social Media, page 10,
2015.


