
HIT2016@DPIL-FIRE2016:Detecting Paraphrases in Indian
Languages based on Gradient Tree Boosting

Leilei Kong*
1
College of Information and

Communication Engineering, Harbin
Engineering University, Harbin, China

2
School of Computer Science and

Technology, Heilongjiang Institute of
Technology, Harbin, China;

+86 451 88028910
kongleilei1979@gmail.com

ZhenyuanHao
School of Computer Science and

Technology, Heilongjiang Institute of
Technology, Harbin, China;

+86 451 88028910
zhenyuan_hao@163.com

Kaisheng Chen

School of Computer Science and
Technology, Heilongjiang Institute of

Technology, Harbin, China;
+86 451 88028910

kaishengchen1997@outlook.com

Zhongyuan Han
School of Computer Science and

Technology, Heilongjiang Institute of
Technology, Harbin, China;

+86 451 88028910
Hanzhongyuan@gmail.com

Liuyang Tian
College of Information and

Communication Engineering, Harbin
Engineering University, Harbin, China

+86 451 88028910
tianliuyang2016@outlook.com

Haoliang Qi
School of Computer Science and

Technology, Heilongjiang Institute of
Technology, Harbin, China;

+86 451 88028910
haoliang.qi@gmail.com

ABSTRACT

Detecting paraphrase is an important and challenging task. It can

be used in paraphrases generation and extraction, machine

translation, question and answer and plagiarism detection. Since

the same meaning of a sentence is expressed in another sentence

using different words, it makes the traditional methods based on

lexical similarity ineffective. In this paper, we describe a strategy

of Detecting Paraphrases in Indian Languages, which is a

workshop track proposed by Forum Information Retrieval

Evaluation 2016. We formalize this task as a classification

problem, and a supervised learning method based on Gradient

Boosting Tree is utilized to classify the types of paraphrase

plagiarism. Inspired by the Meteor evaluation metrics of machine

translation, the Meteor-like features are used for the classifier.

Evaluation shows the performance of our approach, which

achieved the highest Overall Score (0.77), the highest F1 measure

for both Task1 and Task2 on Malayalam and Tamil, and the

highest F1 measure on Punjabi Task2 in the 2016 FIRE Detecting

Paraphrase in Indian Languages task.

CCS Concepts

• Information systems➝Information retrieval

Keywords

Paraphrase; Classification; Indian Languages; Gradient Tree

Boosting.

1. INTRODUCTION
Detecting Paraphrasing has attracted the attention of researchers

in recent years. It is widely used in paraphrases generation and

extraction, machine translation, question and answer and

plagiarism detection.

In the task description of Detecting Paraphrases in Indian

Languages of Forum Information Retrieval Evaluation 2016

(FIRE 2016)1, the paraphrase is defined as “the same meaning of a

1http://nlp.amrita.edu/dpil_cen/

sentence is expressed in another sentence using different words”.
The proposed task is focused on sentence level paraphrase

identification for Indian languages (Tamil, Malayalam, Hindi and

Punjabi). There are two tasks are proposed by FIRE. The first sub

task is: given a pair of sentences from newspaper domain, the task

is to classify them as paraphrases (P) or not paraphrases (NP), and

the second one is: given two sentences from newspaper domain,

the task is to identify whether they are completely equivalent (E)

or roughly equivalent (RE)1 or not equivalent (NE) [6].

The paraphrased sentences always retain the semantic meaning

and usually obfuscated by manipulating the text and changing

most of its appearance. The words in the original sentence is

replaced with synonyms/antonyms, and short phrases are inserted

to change the appearance, but not the idea, of the text (Alzahrani

et al., 2012). Otherwise, the sentence reduction, combination,

restructuring, paraphrasing, concept generalization, and concept

specification also are used to paraphrase the sentence. All of these

operations make the paraphrases identification difficult, because it

involves the semantic similarity, lexical comprehension,

syntactical identification, morphological analysis, and so on.

Since the appearance have changed beyond recognition in

paraphrased sentence, the methods only relying on the term

matching or single feature may be become ineffective in detecting

paraphrase. More features should be integrated in the model to

detecting paraphrase. So we consider a machine learning method

based on classification to address this problem.

Intuitively, the former sub tasks can be viewed as a two-category

classification and the latter is multi-category classification. If we

formalize the task of detecting paraphrase as a classification

problem, our objectives focus on answeringthe following two

questions: (1) Which classification-based methods can effectively

be applied to the detecting paraphraseproblem, and (2) which

features should be used in the classifier.

For the first problem, we choose Gradient Tree Boosting to learn t

he classifier [2,3]. Regarding the second issues, inspired by the

METEOR evaluation metrics of machine translation [4], we design

* Corresponding author

the METEOR-like features for our classifier. Integrating some

classical similarity measure feature, we develop the feature set.

Using the training and testing corpora of Detecting Paraphrases in

Indian Languages proposed by FIRE, we rigorously evaluate

various aspects of our classification method for detecting

paraphrases. Experimental results show that the proposed method

can effectively classify the paraphrases pairs.

The rest of this paper is organized as follows. In Section 2, we ana

lyze the problem of Detecting Paraphrases in Indian Languages, in

troduce the model we used, and describe the features which the cl

assifier uses. In Section 3, we report the experimental results and

performance comparisons with the other detection methods. And i

n the last section we conclude our study.

2. CLASSIFICATION FOR DPIL
We now explore machine-learning methods for Detecting

Paraphrases in Indian Languages. In this section, we analyze the

main issues of Detecting Paraphrases in Indian Languages firstly.

And then a classification method based on boosting tree is

proposed. Finally, we describe the features which the classifier

used.

2.1 Problem Analysis
 As we have discussed in above section, paraphrases

identification is difficult to detect. The traditional similarity

computing methods, such as Cosine Distance, Jaccard Coefficient,

Dice Distance, may be ineffective for paraphrases. Figure 1

exemplifies the paraphrases cases.

Figure 1.A paraphrases cases

From Figure 1, we can see that the two sentences having the

paraphrasing relationship are different in their appearance.

Furthermore, we conduct the analysis on 1000 randomly selected

cases with paraphrase relationship on Malayalam sub corpora and

all four languages corpora. Figure 2 displays the distribution with

Jaccard Coefficient and METEOR-F1 as y-coordinate.

It is easy to detect from Figure 2 that the scores of Jaccard

coefficient are all very low, the average score is only 0.1332.

Since there are few the same terms between the two sentence,

only considering the term similarity may be inadequate. We

analysis for identifying the relationship of them, more feature

should be considered.

2.2 Problem Definition
According the description of detection paraphrases, we formalize

the problem as follows. Denote a pair sentences as si=(oi, pi),

where oi is the original sentence and pi is the paraphrased sentence.

Note that given a pair (oi, pi) on the training data, we can get its

label, which make learn a model for classification possible. Let

the train corpora D={(x1,y1), (x2,y2),, (xi,yi),......, (xn,yn)},

where xi∈R
N
is a feature vector of siand

Figure 2. Score distribution of Jaccard coefficient on

Malayalam (up) sub corpora and all four languages

corpora(down)

Nixxxx Tn

iiii ,...,2,1,),...,,()()2()1(. We use a function to get each

xi defined as follows.

),(i)i(pox i (1)

where),(i)i(pox i is a mapping onto features that describes the

paraphrase between the i-th original sentence oi and the

paraphrased sentence pi.

And yiis the label of xi to denote the category of each xi. For the

task 1, we define yi∈{P, NP}, and for task 2, we define yi∈{E,

RE, NE}.

Then the framework of learning problem can be depicted in

Figure 3.

Figure 3. The framework of Detection Paraphrase

Then, given D as training data, the learning system will learn a

condition probability P(Y|X) based on the training data. Then

given a new input xn+1, the classification system gives the

corresponding output label yn+1according to the learned classifier.

2.3 Classification Model: Gradient

TreeBoosting
Boosting tree is one of the best methods to improve the performan

ce of statistical learning

[2,3]. In this experiment, we use the Gradient Tree Boosting as the

classification algorithm to learn the classifier. Gradient boosting is

 typically used with decision trees (especially CART trees) of a fi

xed size as base learners.

2.4 Features
There are two groups of features, the similarity-based features and

the METEOR-like features, are utilized to define),(i)i(pox i .

The similarity-based features are used to capture the matching

degree of oi and pi, and METEOR-like features is used to describe

the semantic similarity. Specially, the METEOR-like features is

inspired by METEOR, the measure metrics for machine

translation, which is used to evaluate the performance of a

translator. Table 1 list these features in detail.

Table 1. Features for detecting paraphrases

Features Computing methods Description

Jaccard

Coefficient
 i j

i j

i j

s r
JC ,

s r
s r

The ratio of number of shared

terms against total number of

terms.

Cosine

Similarity ||||||||
),(

ii

ii
ii

yx

yx
yxCS

ii yx

 is the inner product of x

and y, and |||| x
 represents the

length of vector.

Dice

Coefficient)()(

2
),(

rlenslen

)common(s,r
rsDC

common (s, r) is the total

number of the common

unigrams in s and r, and len(r)

and len(s) are the total number

of unigrams in r and s.

METEOR

Precision)(

),(

rlen

rscommon
P

common (s, r) is the total

number of the common

unigrams in s and r, and len(r)
is the total number of unigrams

in r.

METEOR

Recall)(

),(

slen

rscommon
R

 len(s) is the total number of

unigrams in s.

METEOR

F1 PR

PR
F

2
1

Combine the precision and

recall.

METEOR

Fmean PR

PR
Fmean

9

10

 Combine the precision and

recall.

METEOR

Penalty

3

50

)common(s,r

)len(chunks
.Penalty

len(chunks)is the number of the

longer matchesin each chunk.

METEOR

score
 PenaltyFmeanScore 1 The overall METEOR score.

3. Experiments

3.1 Dataset
The evaluation dataset is the Detecting Paraphrase in India

Language (DPIL) which is mainly obtained from the newspaper.

The details of this corpora can be found in

http://nlp.amrita.edu/dpil_cen/.

The corpora are divided into two different subsets: Task1-set and

Task2-set, and each sub set contains four different categories

India language: Tamil, Malayalam, Hindi and Punjabi. The

Task1-set contains 12400 samples, including 9200 training

samples and 3200 test samples, and the Task2-set contains 17650

examples, including 12700 training samples and 4950 test

samples. The statistics of training and testing data is shown in

Table 2 and Table 3.

Table 2. Corpus statistics of DPIL 2016 on Task1

 Train Test

Language Hin Mal Pun Tam all Hin Mal Pun Tam all

SampleNum

ber
2500 2500 1700 2500 9200 900 900 500 900 3200

Avg

terms

blank 32 18 39 24 27 32 19 43 23 28

4gram 126 166 150 175 155 120 181 164 176 160

Table 3. Corpus statistics of DPIL 2016 on Task2

 Train Test

Language Hin Mal Pun Tam All Hin Mal Pun Tam all

SampleNum

ber
3500 3500 2200 3500 12700 1400 1400 750 1400 4950

Avg

terms

blank 34 18 41 24 28 42 19 41 28 31

4gram 131 164 156 178 158 154 177 157 207 176

3.2 Experimental Settings

3.2.1 Pre-processing
For each sentence pair in training data and test data, wefirstly

remove numbers, punctuation and blank spaces. Then, we adopt

two types of word segmentation, one is taking each word as a

term unit, and the other is based on the n-gram, which the words

in sentence are segmented in the form of n-gram. For example,

Figure 4 shows an example of 4-gram. In the experiments, the n is

set empirically.

Figure 4. The example of 4-gram

3.2.2 Parameter Tuning
On the training corpus, the classifier is trained by using sklearn

Boosting Classifier Gradient2. The learning rate (learning rate

shrinks the contribution of each tree by learning rate) is set as 1.0,

the max_depth (the maximum depth limits the number of nodes in

the tree) is set as 1, the random state (random state is the seed

used by the random number generator) is set as 0. All the other

parameters are set as their default values except the parameter

n_estimators (The number of boosting stages to perform).

The other parameters, including the methods of word

segmentation, the method of pre-processing method, the n value

of ngram, are set experimentally.

We use the cross validation to tune the parameter n_estimators.

The training corpora is randomly divided into two equal parts, and

one is chosen as the training data and the other as the validation

data.

3.3 Performance Measures
In this evaluation experiment, the experimental results are

evaluated according to [5].

1) TP: The sample is true, and the results obtained are positive.

2) FP: The sample is false, and the results obtained are positive.

3) FN: The sample is false, and the results obtained are negative.

4) TN: The sample is true, and the results obtained are negative.

According to the above measure metrics, the Precision and Recall

are defined as follows:

FPTP

TP

precision

(5)

FNTP

TP
ll

reca

(6)

The main evaluation metrics adopted by DPIL is Accuracy and

 F1 measure defined as follows:

2http://scikit-learn.org/stable/

TNFPTP

TNTP

FN

accuracy

(7)

recallprecision

recallprecision

2

F1

(8)

3.4 Experimental Results

3.4.1 Experimental results on sub corpora
Table 4 show the experimental results released by FIRE.

Table 4. Experimental results on DPIL@FIRE2016

(a) Task 1 sub corpus

TEAM
Accuracy F1 Measure

Mal Tam Hin Pun Mal Tam Hin Pun

HIT2016 0.8377
0.821

1

0.896

6

0.944

0

0.810

0

0.790

0

0.890

0

0.940

0

KS_JU 0.8100
0.788

8

0.906

6

0.946

0

0.790

0

0.750

0

0.900

0

0.950

0

NLP-NITMZ 0.8344
0.833

3

0.915

5

0.942

0

0.790

0

0.790

0

0.910

0

0.940

0

JU-NLP 0.5900
0.575

5

0.822

2

0.942

0

0.160

0

0.090

0

0.740

0

0.940

0

Anuj —— ——
0.920

0
—— —— ——

0.910

0
——

DAVPBI —— —— ——
0.938

0
—— —— ——

0.940

0

BITS-PILANI —— —— 0.8977 —— —— —— 0.8900 ——

NLP@KEC ——
0.823

3
—— —— ——

0.790

0
—— ——

ASE —— ——
0.358

8
—— —— ——

0.340

0
——

CUSAT

TEAM
0.8044 —— —— ——

0.760

0
—— —— ——

CUSAT NLP 0.7622 —— —— ——
0.750

0
—— —— ——

(b) Task 2 sub corpus

TEAM
Accuracy F1 Measure

Mal Tam Hin Pun Mal Tam Hin Pun

HIT2016 0.7486
0.755

0

0.900

0

0.922

6

0.746

0

0.739

8

0.898

4

0.923

0

KS_JU 0.6614
0.673

5

0.852

1

0.896

0

0.657

8

0.664

5

0.848

2

0.896

0

NLP-NITMZ 0.6243
0.657

1

0.785

7

0.812

0

0.606

8

0.630

7

0.764

2

0.808

6

JU-NLP 0.4221
0.550

7

0.685

7

0.886

6

0.307

8

0.431

9

0.684

1

0.886

6

Anuj —— ——
0.901

4
—— —— ——

0.900

0
——

DAVPBI —— —— ——
0.746

6
—— —— ——

0.727

4

BITS-PILANI —— —— 0.7171 —— —— —— 0.7123 ——

NLP@KEC ——
0.685

7
—— —— ——

0.667

4
—— ——

ASE —— ——
0.354

3
—— —— ——

0.353

5
——

CUSAT

TEAM
0.5086 —— —— ——

0.465

8
—— —— ——

CUSAT NLP 0.5207 —— —— ——
0.513

0
—— —— ——

The experimental results show that the proposed method achieves

the best Accuracy on Malayalam of Task 1 and on Malayalam,

Tamil and Punjabi of Task 2. And the highest F1 measure for both

Task1 and Task2 on Malayalam and Tamil, and the highest F1

measure on Punjabi Task2 in the 2016FIREDetecting Paraphrase

in Indian Languages task.

3.4.2 Effect of word segmentation
For the word segmentation, we utilize two processing methods.

One is based on the space to do the word segmentation, and the

other is based on n-gram. We compare the two kinds of word

segmentation methods in Table 5.

Table 5. Comparison of two different preprocessing

Task1
4-gram space

Mal Tam Hindi Pun Mal Tam Hindi Pun

Precisio

n 0.8993 0.9587 0.9235 0.9884 0.8771 0.9543 0.9340 0.9911

Recall 0.9301 0.9606 0.9187 0.9921 0.9279 0.9574 0.9289 0.9921

Accurac

y
0.8957 0.9517 0.9054 0.9885 0.8785 0.9469 0.9178 0.9901

F1 0.9143 0.9596 0.9210 0.9902 0.9017 0.9558 0.9314 0.9916

Task2
4-gram space

Mal Tam Hindi Pun Mal Tam Hindi Pun

Precisio

n 0.7298 0.7873 0.8499 0.9810 0.7135 0.7917 0.8553 0.9814

Recall 0.7370 0.7918 0.8484 0.9808 0.7227 0.7949 0.8545 0.9813

Accurac

y
0.7370 0.7918 0.8484 0.9808 0.7227 0.7949 0.8545 0.9813

F1 0.7309 0.7878 0.8483 0.9808 0.7134 0.7923 0.8541 0.9813

From the experimental results, we can see that the method of 4-

gram segmentation achieves higher F1 Measure than the space

segmentation, so we use n-gram method in the following

experiments to deal with the India corpus.

3.4.3 Effects of pre-processing
In our experiment, there are two types of pre-processing methods.

To investigate the different contribution of each pre-processing

method on each language, we analyze the effects of pre-

processing. Taking 4gram word segmentation as example, Table 6

gives the experimental results, where removing all means remove

the punctuation, the number and the space, and reserving * means

reserving * and removing all others. For example, reserving

punctuationrepresents the punctuation is reserved and the number

and space are removed.

Table 6. Effects of pre-processing

Mal
Reserved

punctuation

Reserved

number

Reserved

space
Remove all

Task1

Precision 0.9013 0.8995 0.8992 0.8988

Recall 0.9280 0.9276 0.9325 0.9335

Accuracy 0.8956 0.8944 0.8966 0.8968

F1 Measure 0.9144 0.9133 0.9154 0.9157

Task2 Precision 0.7304 0.7258 0.7253 0.7289

Recall 0.7380 0.7340 0.7321 0.7362

Accuracy 0.7380 0.7340 0.7321 0.7362

F1 Measure 0.7316 0.7273 0.7264 0.7299

Tam
Reserved

punctuation

Reserved

number

Reserved

space
Remove all

Task1

Precision 0.9585 0.9591 0.9535 0.9570

Recall 0.9593 0.9590 0.9558 0.9607

Accuracy 0.9506 0.9507 0.9455 0.9506

F1 Measure 0.9589 0.9590 0.9546 0.9588

Task2

Precision 0.7855 0.7874 0.7864 0.7871

Recall 0.7901 0.7915 0.7897 0.7917

Accuracy 0.7901 0.7915 0.7897 0.7917

F1 Measure 0.7861 0.7880 0.7866 0.7880

Hindi
Reserved

punctuation

Reserved

number

Reserved

space
Remove all

Task1

Precision 0.9218 0.9242 0.9310 0.9230

Recall 0.9136 0.9151 0.9244 0.9195

Accuracy 0.9018 0.9039 0.9133 0.9054

F1 Measure 0.9176 0.9195 0.9275 0.9211

Task2

Precision 0.8490 0.8502 0.8495 0.8500

Recall 0.8477 0.8481 0.8487 0.8486

Accuracy 0.8477 0.8481 0.8487 0.8486

F1 Measure 0.8475 0.8480 0.8484 0.8484

Pun
Reserved

punctuation

Reserved

number

Reserved

space
Remove all

Task1

Precision 0.9909 0.9904 0.9867 0.9903

Recall 0.9914 0.9908 0.9895 0.9905

Accuracy 0.9895 0.9889 0.9859 0.9887

F1 Measure 0.9911 0.9906 0.9881 0.9904

Task2

Precision 0.9810 0.9774 0.9812 0.9812

Recall 0.9808 0.9772 0.9810 0.9811

Accuracy 0.9808 0.9772 0.9810 0.9811

F1 Measure 0.9808 0.9772 0.9810 0.9811

According to the experimental results shown in Table 6, even

thoughwe find that there are few differences when we removing

punctuation, numbers and spaces, we still accept the best pre-

processing method on the test dataset.

3.4.4 Effects of n-gram
For analyze the effects of n, we carry out the experiments from 1-

gram to 10-gram, and with Precision, Recall and F1 measure as

evaluation indicators. The experimental results are shown in

Figure 5.

(a) The experimental results on Task 1

(b) The experimental results on Task 2

Figure 5. The effects of n-gram

According to the above experimental results, 4-gram achieves the

best results. So we set n=4 in the testing corpora of DPIL 2016.

3.4.5 Effects of n_estimators
The parameter n_estimators is the number of iterations of

boosting stage when the classification model trained. It is set

empirically. Figure 6 shows the results on training datasets.

0.885

0.89

0.895

0.9

0.905

0.91

0.915

0 20 40 60 80 100

dpil-mal-train-Task1

Accuracy F1 Measure

(a) The experimental results of Malayalam on Task1

(b) The experimental results of Tamil on Task1

(c) The experimental results of Hindion Task1

(d) The experimental results of Punjabi on Task1

(e) The experimental results of Malayalam on Task2

(f) The experimental results of Tamil on Task2

(g) The experimental results of Hindion Task2

(h) The experimental results of Punjabi on Task2

Figure 6.Effects of n_estimators

According to Figure 6, we get the value of the parameter

n_estimators of each language. Details are shown in Table 7

which is used in the testing datasets of DPIL.

Table 7.N_estimatorssetting

 Task1 Task2

Malayalam 55 40

Tamil 20 20

Hindi 45 45

Punjabi 10 25

4. CONCLUSIONS
We describe an approach to the Detecting Paraphrase problem in

India Language that makes used of the Gradient Tree Boosting.

Overall, the approach was very competitive and achieved the

highest Accuracy and F1 measure among all task participants.

5. ACKNOWLEDGMENTS
This work is supported by Youth National Social Science Fund of

China (No. 14CTQ032), National Natural Science Foundation of

China (No. 61370170), and Research Project of HeilongjiangProv

incial Department of Education (No. 12541677, 12541649).

6. REFERENCES
[1] Alzahrani, S. M., Salim, N., and Abraham, A. 2012.

Understanding plagiarism linguistic patterns, textual features,

and detection methods. IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), 42(2),

133-149.

[2] Friedman, J. H., 2001. Greedy function approximation: a

gradient boosting machine. Annals of statistics, 1189-1232.

[3] Friedman, J. H., 2002. Stochastic gradient boosting.

Computational Statistics & Data Analysis, 38(4), 367-378.

[4] Banerjee, S., andLavie, A., 2005, June. METEOR: An

automatic metric for MT evaluation with improved

correlation with human judgments. In Proceedings of the acl

workshop on intrinsic and extrinsic evaluation measures for

machine translation and/or summarization. 29: 65-72.

[5] Li, Hang., 2012. Statistical learning methods.Tsinghua

university press(in Chinese).

[6] Anand Kumar, M., Singh, S., Kavirajan, B., and Soman, K.P.

2016. December. DPIL@FIRE2016: Overview of shared

task on Detecting Paraphrases in Indian Languages, Working

notes of FIRE 2016 - Forum for Information Retrieval

Evaluation, Kolkata, India, CEUR Workshop Proceedings,

CEUR-WS.org.

	1. INTRODUCTION
	2. CLASSIFICATION FOR DPIL
	2.1 Problem Analysis
	2.2 Problem Definition
	2.3 Classification Model: Gradient TreeBoosting
	2.4 Features

	3. Experiments
	3.1 Dataset
	3.2 Experimental Settings
	3.2.1 Pre-processing
	3.2.2 Parameter Tuning

	3.3 Performance Measures
	3.4 Experimental Results
	3.4.1 Experimental results on sub corpora
	3.4.2 Effect of word segmentation
	3.4.3 Effects of pre-processing
	3.4.4 Effects of n-gram
	3.4.5 Effects of n_estimators

	4. CONCLUSIONS
	5. ACKNOWLEDGMENTS
	6. REFERENCES

