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ABSTRACT
In this paper we present our submission for FIRE 2016 Shared Task
on Code Mixed Entity Extraction in Indian Languages. We describe
a Neural Network system for Entity Extraction in Hindi-English
Code Mixed text. Our method uses distributed word representa-
tions as features for the Neural Network and therefore, can easily
be replicated across languages. Our system ranked first place for
Hindi-English with an F1-score of 68.24% .

1. INTRODUCTION
This paper describes our system for the FIRE 2016 Shared Task

on Code Mixed Entity Extraction in Indian Languages. The work-
shop focuses on NLP approaches for identifying named entities
such as Person names, Organization names, Product names, Lo-
cation names etc. in code mixed text.

In this paper, we present a simple feed forward neural network
for Named Entity Recognision (NER) that use distributed word
representations built using word2vec [2] and no other language-
specific resources but the unlabeled corpora.

The rest of the paper is organized as follows: In Section 2, we
discuss about the data of the shared task. In Section 3, we dis-
cuss the methodology we adapted to address the problem of NER,
in detail. Experiments and Results based on our methodology are
discussed in Section 4. Finally we conclude in Section 5.

2. DATA
The Entity Extraction in the Code-Mixed (CM) data in Indian

Languages shared task is meant for NER in 2 language pairs namely,
Hindi-English (H-E) and Telugu-English (T-E). However, we only
recived data for Hindi-English language pair.

2.1 Data Format
The training data is provided into two files; a raw-tweets file and

an annotation file. (1) below, shows the format of raw tweets in
train and test data, while (2) shows the format of named entity an-
notations for the training data.

(1) TweetID, UserID, Tweet

(2) TweetID, UserID, NE-Tag, NE, startIndex, Length

2.2 Data Statistics
Table 1 shows the train and test data stattictics after tokenization.

Table 2 shows the tag statistics in the training data. Note that the
OTHER tag in table 2 is not any NE tag. We introduced this tag for
all non-NE tokens.

Data-set # Tweets # Tokens
Train 2,700 39,216
Test 7,429 1,50,056

Table 1: Data Statistics

Tag Count Tag Count
ENTERTAINMENT 858 LOCOMOTIVE 11

PERSON 338 YEAR 9
LOCATION 88 MATERIALS 9

ORGANIZATION 72 TIME 8
COUNT 65 FACILITIES 8
PERIOD 59 LIVTHINGS 5

ARTIFACT 29 DISEASE 5
DATE 27 SDAY 3

MONEY 23 MONTH 3
DAY 18 OTHER 38366

Table 2: Tag Statistics in the training data

3. METHODOLOGY
We modelled the task into a classification problem where each

token needs to be labelled with one of the 20 tags as given in table 2.
For this classification task, we use a simple neural network archi-
tecture. The neural network model is the standard feed-forward
neural network with a single layer of hidden units. The output
layer uses softmax function for probabilistic multi-class classifica-
tion. The model is trained by minimizing cross entropy loss with an
l2-regularization over the entire training data. We use mini-batch
Adagrad for optimization and apply dropout.

We explored various token level and contextual features to build
an optimal Neural Network using the provided training data. These
features can be broadly grouped as described below:
Contextual Word Features: They constitute the current word and
2 words to either side of the current word.
Contextual Prefix Features: They constitute the current word pre-
fix and prefixes of 2 words to either side of the current word. All
these prefixes are of length 3.
Contextual Suffix Features: They constitute the current word suf-
fix and suffixes of 2 words to either side of the current word. All
these suffixes are of length 3.
Non-lexical Features: They constitute capitalization feature and
length feature. Capitalization feature represents if a word is in
upper-case, lower-case or title-case. Length feature represents the
token length in the form of bins: 1-5, 6-8 and rest. The non-lexical
features are added for the current word only.

We include the lexical features in the input layer of the Neu-
ral Network using the distributed word representations while for



the non-lexical features we use randomly initialized 3-dimensional
vectors within a range of −0.25 to +0.25. We use Hindi and En-
glish monolingual corpora to learn the distributed representation of
the lexical units. The English monolingual data contains around
280M sentences, while the Hindi data is comparatively smaller
and contains around 40M sentences. To learn the suffix and pre-
fix embeddings, we simply crated prefix and suffix corpora from
the original monolingual corpora of Hindi and English and then
use word2vec to learn their embeddings.

Instead of a single language specific word embedding for each
lexical feature, we use a concatenated vector from Hindi and En-
glish word embeddings. This approach has three main benefits.
First, we do not need a language identification system to choose
the embedding space of a lexical item. Second, we do not depend
on a joint word embedding space which is usually trained using
a costly bilingual lexicon. Third, the named entities are usually
shared between the languages. This provides a two-way evidence
to the training model to learn named entities. We use [1] transliter-
ation system 1 to transliterate Roman words to Devanagari, so that
we can extract their embeddings from the Hindi embeddings space.
Apart from named entities Hindi words will not be present in the
English embedding space and English words will not be present in
the Hindi embedding space.

4. EXPERIMENTS AND RESULTS
In any non-linear neural network model, we need to tune a num-

ber of hyperparameters for an optimal performance. The hyper-
parameters include number of hidden units, choice of activation
function, choice of optimizer, learning rate, dropout, dimension-
ality of input units, etc. We used 20% of training data for tun-
ing these parameters. The optimal parameters include: 200 hidden
units, adagrad optimizer, rectilinear activation function, 200 bacth
size, 0.025 learning rate, 0.5 dropout and 25 training iterations.
We obtained best development set accuracy at 80 dimensional word
embeddings and 20 dimensional prefix and suffix embeddings. De-
velopment set results are given in Table 3. Test set results are given
in Table 4

NE-TAG Precision Recall F1-score Support
ARTIFACT 1.00 0.10 0.18 10

COUNT 0.67 0.46 0.55 13
DATE 1.00 0.43 0.60 7
DAY 1.00 1.00 1.00 4

DISEASE 0.00 0.00 0.00 1
ENTERTAINMENT 0.98 0.62 0.76 174

LOCATION 0.88 0.54 0.67 13
LOCOMOTIVE 0.00 0.00 0.00 3
MATERIALS 0.00 0.00 0.00 3

MONEY 0.00 0.00 0.00 3
MONTH 0.00 0.00 0.00 1

ORGANIZATION 1.00 0.07 0.13 14
PERIOD 0.64 0.78 0.70 9
PERSON 0.98 0.68 0.80 71

TIME 0.00 0.00 0.00 1
YEAR 1.00 1.00 1.00 2

avg / total 0.92 0.57 0.68 329

Table 3: Development set results

1https://www.github.com/irshadbhat/indic-trans

Precision Recall F1-score
80.92 59.00 68.24

Table 4: Test set results

5. CONCLUSION
In this paper, we proposed a resource light Neural Network ar-

chitecture for Entity Extraction in Hindi-English Code Mixed text.
The Neural Network uses distributed representation of lexical fea-
tures learned from monolingual corpora. Despite the simplesity of
our architecture we achieved best results.
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