Mining Emotional Features of Movies
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ABSTRACT

In this paper, we present the algorithm designed for mining
emotional features of movies. The algorithm dubbed
Arousal-Valence Discriminant Preserving Embedding (AV-
DPE) is proposed to extract the intrinsic features embedded
in movies that are essentially differentiating in both arousal
and valence directions. After dimensionality reduction, we
use the neural network and support vector regressor to make
the final prediction. Experimental results show that the
extracted features can capture most of the discriminant
information in movie emotions.

1. INTRODUCTION

Affective multimedia content analysis aims to auto-
matically recognize and analyze the emotions evoked by
multimedia data such as images, music, and videos. It has
a lot of real-world applications such as image search, movie
recommendation, and music classification [3,7-9,11-14].

In this 2016 FEmotional Impact of Movies Task, the
participants are required to design algorithms to predict the
arousal and valence values of the given movies automatically.
The dataset used in this task is the LIRIS-ACCEDE dataset
(liris-accede.ec-lyon.fr). It contains videos from a set of
160 professionally made and amateur movies, shared under
the Creative Commons licenses that allow redistribution [2].
More details of the task requirements as well as the dataset
description can be found in [5,10].

In this paper, we perform both global and continuous
emotion predictions via a proposed supervised dimensionali-
ty reduction algorithm called Arousal-Valence Discriminant
Preserving Embedding (AV-DPE), which learns the compact
representations of the original data. After obtaining the low-
dimensional features, we use the neural network and support
vector regressor to predict the emotion values.

2. PROPOSED METHOD

In order to derive the intrinsic factors in movies that
convey or evoke emotions along the arousal and valence
dimensions, we propose a supervised feature extraction
algorithm dubbed Arousal-Valence Discriminant Preserving
Embedding (AV-DPE) to map the original high-dimensional
representations into a low-dimensional feature subspace, in
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which the data with similar A-V values are close to each
other, while the data with different A-V values are faraway
from each other.

Let x € RP be the high-dimensional feature vector
of the movie, and y = [y'V),y®] be the corresponding
emotion label vector, where y* and y® denote the arousal
value and valence value, respectively. Given the training
set {(x1,¥1), s Xn,yn)}, AV-DPE aims at learning a
transformation matrix U = [uy, ..., ug) € RP*? which is able
to project the original D-dimensional data to an intrinsically
low-dimensional subspace Z = R%.

In order to describe the similarity between data samples,
we define the following adjacency scatter matrix:

Sa=> Y Ay(xi—x;)(xi —x,)7, (1)

i=1 j=1

where A;; denotes the similarity between the i-th and j-th
data points. In our formulation, we use the form of inner
product between the corresponding label vectors associated
with x; and x;. To further normalize the similarity values
into interval [0,1], we define the normalized adjacency
matrix A where

Aij = (y6,35) = (yi/llyall i /llysll)- )

The normalized adjacency scatter matrix is then defined as:

n n
Sa=> > Ay(xi—x;)(xi —x;)". (3)
i=1 j=1
Similarly, we define the normalized discriminant scatter
matrix to characterize the dissimilarity between data points:

Sa= > Dijlxi —x))(xi =x;)", (4)

i=1 j=1

where we simply define Dl‘j =1- Aij.

In order to maximize the distance between data points
with different labels while minimizing the distance between
data points with similar labels, the objective function of AV-
DPE is formulated as follows:

U = argmax{tr((US,U) ' UTS,U)}, (5)

where tr(-) denotes the matrix trace operation and (S,)
denotes the Moore-Penrose pseudoinverse of S, [6]. The
optimization problem in Eq. (5) can be solved by some
standard matrix decomposition techniques [6].



Table 1: Results on global emotion prediction

Valence

Pearson’s CC

MSE

Pearson’s CC

0.158772315634

0.235909661034

0.102487446458

0.174547894742

0.378511708782

0.378511708782

0.212414301359

0.267627565271

0.089311269390

0.201427253365

0.239352667040

0.133965496755

Table 2: Results on continuous emotion prediction

Valence

Pearson’s CC

MSE

Pearson’s CC

0.0500544335696

0.125062204735

0.00901181966468

0.0557718765692

0.105905051008

0.0117374077757

0.0266523947466

0.139507683129

0.00139093558922

Criteria Arousal
Runs MSE
#1 1.18511707891
#2 1.18260763366
#3 1.46475414861
#4 1.61515123698
Criteria Arousal
Runs MSE
#1 0.152869437388
#2 0.128197164652
#3 0.125552338276
#4 0.293856466692

0.0266523946850

0.124565684871

0.0192993915142

3. EXPERIMENTS

In this section, we report the experimental settings and
the evaluation results.

Global emotion prediction: we construct a 34-D
feature set, including alpha, asymmetry_env, colorfulness,
colorRawEnergy, colorStrength, compositionalBalance, cut-
Length, depthOfField, entropyComplexity, flatness, glob-
alActivity, hueCount, lightning, maxSaliencyCount, medi-
anLightness, minEnergy, nbFades, nbSceneCuts, nbWhite-
Frames, saliencyDisparity, spatialEdgeDistributionArea,
wtf_max2stdratio_{1-12} and zcr. Note that all above
features are provided by the task organizers.

e Run #1: We use the original 34-D features as the
input, and then use a function fitting neural network
[1] with 100 nodes in the hidden layer for prediction.
The Levenberg-Marquardt backpropagation function
is used in training.

e Run #2: We use the original 34-D features as input,
and then use the v-support vector regression (r-SVR)
for prediction. In r-SVR, the RBF kernel is utilized
with the default setting from LIBSVM [4], i.e., cost =
1, v = 0.5, and + is then set to be the reciprocal of the
number of feature dimension.

e Run #3: We first use the proposed AV-DPE to reduce
the original feature space to the 10-D subspace. Then
utilize the neural network for prediction. The setting
of neural network is the same as that in Run #1.

e Run #4: We first use the proposed AV-DPE to reduce
the original feature space to the 10-D subspace. Then
we use the v-SVR for prediction. The setting of v-SVR,
is the same as that in Run #2.

Continuous emotion prediction: we downsample the
size of each video to 64 x 36. As a result, we have a 6912-D
feature vector of RGB values for each frame.

e Run #1: We use the original 6912-D features as the
input, and then use the neural network for prediction.
The setting of neural network is the same as that in
Run #1 of global emotion prediction.

e Run #2: We use the original 6912-D features as the
input, and then use the v-SVR for prediction. The
setting of ¥-SVR is the same as that in Run #2 of
global emotion prediction.

e Run #3: We first use the proposed AV-DPE to reduce
the original high-dimensional feature space to the 100-
D subspace. Then we use the neural network for
prediction. The setting of neural network is the same
as that in Run #1 of global emotion prediction.

e Run #4: We first use the proposed AV-DPE to reduce
the original high-dimensional feature space to the 100-
D subspace. Then we use the v-SVR for prediction.
The setting of »-SVR is the same as that in Run #2
of global emotion prediction.

Table 1 and Table 2 report the results of our system. From
the tables we can see that after dimensionality reduction,
the performance of the reduced features (Run #3 and Run
#4) is generally worse than that of the original features
(Run #1 and Run #2), which indicates that the emotion
information in movies is relatively complex, and thus we may
not be able to fully describe it using just a few dimensions.
However, considering that the dimension of the reduced
features is much less than that of the original features, we
still can conclude that the learned subspace preserves rich
discriminant information of the original feature space.

Moreover, from both tables we can observe that the
neural network performs more robust than SVR after
dimensionality reduction. The possible reason is that
besides the discriminant ability, the neural network with
the hidden layer has better representation ability of the
original data than SVR, which is also of great importance
in supervised learning tasks.

4. CONCLUSIONS

In this working notes paper, we have proposed a
dimensionality reduction method to extract the emotional
features from movies. By minimizing the distance between
data points with similar emotion levels and maximizing
the distance between data points with different emotion
levels simultaneously, the learned subspace keeps most of the
discriminant information and gives relatively robust results
in both global and continuous emotion prediction tasks.
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