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ABSTRACT

This paper describes our working approach for the Emo-
tional Impact of Movies task of MediaEval 2016. There
are 2 sub-tasks set to make affective predictions, based on
Arousal and Valence values, on video clips. Sub-task 1 re-
quires global emotion prediction. Here a framework is de-
veloped using Deep Auto-Encoders, a feature variation al-
gorithm and a Deep network. For sub-task 2, a set of au-
dio features are extracted for continuous emotion prediction.
Both sub-tasks are approached as a regression problem eval-
uated by Mean Squared Error and Pearson Correlation Co-
efficient.

1. INTRODUCTION

The '’Emotional Impact of Movies Task’ comprises two
sub-tasks with the goal of creating a system that automat-
ically predicts the emotional impact on video contents, in
terms of Arousal and Valence, which in a 2-D scale can be
used to describe emotions. Sub-task 1 - Global emotion
prediction, predicting a score on induced Valence (negative-
positive) and induced Arousal (calm-excited) for the whole
clip; Sub-task 2 - Continuous emotion prediction, predict-
ing a score of induced Arousal and Valence continuously for
each 1s-segment of the video. The development dataset used
in both task is the LIRIS-ACCEDE dataset [2]. For the first
sub-task, 9800 video excerpts (around 10s) are provided with
the global Valence and Arousal annotations. For the second
sub-task, 30 movies are provided with the continuous anno-
tation of Valence and Arousal. Full details on the challenge
tasks and database can be found in [3].

2. METHODOLOGY

2.1 Framework Summary for Sub-task 1:

The framework is primarily based on visual cues, with
the use of Deep Learning to benefit from the large sample
video dataset. The content of the videos have many differ-
ent scenes making the emotion detection process challeng-
ing. To tackle this, a 3 stage framework has been designed.
The first stage of the framework is a Deep Auto-Encoder,
which can be understood in [1]. This is utilized to try and
give a representation recreated by a Deep Network. It is
trained with all video samples and each image is reproduced
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at frame level to try and obtain common representations
amongst all the videos. It is likely that this will highlight
peoples faces and hide the uncommon scenes and objects.
The second stage observes the decoded features for varia-
tions within a video sample by using Feature Dynamic His-
tory Histogram (FDHH) across the frame level, to produce
a histogram of patterns that summarize and capture these
observations from a set of features. Finally the FDHH fea-
tures are used with a regressive model to predict the Arousal
and Valence scales.

2.1.1 Stage I - Auto-Encoder:

There are two Deep Auto-Encoders trained, one based on
MSE loss and the other on Euclidean loss. Using a similar
architecture of Fig. 1 found in [10], the Auto-Encoders both
have the same architecture of 4 convolution (Conv) layers
followed by 4 deconvolution (DeConv) layers. Each of the
Conv and DeConv layers are followed by a Rectified Linear
Unit (ReLU) activation layer, and at the end is a loss layer.

2.1.2 Stage 2 - FDHH Feature:

The FDHH algorithm, based on the idea of Motion His-
tory Histogram (MHH) [8], aims to extract temporal move-
ment across the feature space. This is achieved firstly by
taking the absolute difference of a feature vector V(n,1: ¢)
representing a frame, and its following frame V(n+1,1: ¢) to
produce D(n—1,1 : ¢), where n is the frame sample and c is
the feature dimension. Next, the result calculated of each di-
mension from the vector D is compared to a threshold T" that
is set by the user to control the amount of variation to de-
tect, producing a vector of 1’s and 0’s, that represent above
and below the threshold. This is repeated for all frames ex-
cept the last frame, and a new feature set F(1: N—1,1:C)
is produced. Next, each dimension c is observed for patterns
m = 1 : M throughout the feature vector F(1: N — 1,¢),
where a histogram is then produced for each defining pat-
tern. A pattern can be defined as the number of consecutive
1’s e.g. m = 1 would look for a pattern 7010, and m = 2
would look for ’0110’. The final FDHH Feature will of di-
mensions FDHH(1: M,1: C).

2.1.3 Stage 3 - Regression Models:

The final stage of the framework is the regression model,
in which 2 are utilized. First being a Deep Network trained
on the FDHH features using MSE and Euclidean Regression
loss function, and the other treats this trained Deep Network
as a Pre-Trained feature extractor, and applies Partial Least
Squares (PLS) on the features to predict the Arousal and
Valence values.



The Deep Network consists of 9 Conv layers, 1 Pooling
layer, 8 ReLu Activation Layers and a Loss Layer at the
end. Training is done using Support Gradient Descent until
100 epochs, with the weights initialized using the Xavier
method [5].

The Pre-Trained features are extracted from the 100th
epoch network, which are concatenated with Audio descrip-
tors that are mentioned in Section 2.2.1, however they are
based on a whole video clip samples rather than 1s segments.
These features are concatenated, Rank Normalized between
0 and 1, and then PLS regression is used.

2.2 Framework Summary for Sub-task 2:

2.2.1 Stage I - Audio Descriptors:

The Audio descriptors are extracted from openSMILE
software [9] which include 16 low-level descriptor (LLD) as
follows:root mean square (RMS) frame energy; zero-crossing-
rate (ZCR); harmonics-to-noise ratio (HNR); pitch frequency
(FO); mel-frequency cepstral coefficients (MFCC) 1-12. For
each LLDs, 12 functionals mean, standard deviation, kurto-
sis, skewness, minimum and maximum value, relative posi-
tion, and range as well as two linear regression coefficients
with their mean square error (MSE) are also computed. In
total, the number of features per ls-segment are (16 x 2 x
12) = 384 attributes.

2.2.2 Stage 2 - Regression Models:

A total of 3 regressive models are trained on the audio
descriptors. These are mentioned in the following:

Run 1 Linear Regression + Gaussian smoothing
(LR+Gs): After obtaining the predicted label from the re-
gression stage, a smoothing operation is performed, using
Gaussian filtering with a window size of 10. The smoothing
window is carefully selected, in order to retain the pattern
of the labels whilst increasing the performance. It is re-
quired for removing the high frequency noise irrelevant to
the affective dimensions.

Run 2 Partial Least Square (PLS): PLS is a statisti-
cal algorithm that bears some relation to principal compo-
nents regression. Previous EmotiW 2015 employed PLS in
the systems, which gave better results than the baseline [6]
[7].

Run 3 Least Square Boosting + Moving Aver-
age smoothing (LSB + MAs): LSB is regression model
trained with gradient boosting [4]. In this model, the num-
ber of regression trees in the ensemble is chosen as 500 on a
training set. After obtaining the prediction labels, a smooth-
ing operation is performed using a moving average filter, in
order to increase the performance.

3. EXPERIMENTAL SETUP

5 different runs were made based on the framework Sub-
task 1, and 3 different runs for Sub-task 2, which are:

Run 1 & Run 2 Deep_Audio PLS: These runs uti-
lize a trained Auto-Encoder with a Euclidean loss function
(EUC_Loss) and MSE loss function (MSE_Loss), followed by
FDHH feature extraction. Finally trained Deep Networks,
with Euclidean and MSE loss respectively, are used as a Pre-
Trained Feature Extractors. These features are fused with
Audio features and a PLS regression model is trained.

Run 3 Audio 4+ PLS: This run is based on using just the
openSMILE Audio descriptors, along with a PLS regression

Table 1: Results on sub-task 1 using the proposed
framework
Run Arousal Valence

MSE | PCC | MSE | PCC
1.462 | 0.251 | 0.236 | 0.143
1.441 | 0.271 | 0.237 | 0.144
1.525 | 0.143 | 0.236 | 0.125
1.443 | 0.248 | 0.231 | 0.146
1.431 | 0.263 | 0.231 | 0.149

Y = W DN

Table 2: Results on sub-task 2 using proposed
framework

Run Arousal Valence

MSE PCC MSE PCC

1 0.157 | -0.072 | 0.173 | -0.042

2 0.129 | -0.013 | 0.141 | -0.007

3 0.182 | -0.039 | 0.175 | -0.062
model.

Run 4 and Run 5 Deep Network: This run is based
on training an Auto-Encoder with a Euclidean loss function
(EUC_Loss) and MSE loss function (MSE_Loss). They are
also followed by FDHH feature extraction, with Deep Net-
works trained on the FDHH features as a regressive model,
using Euclidean and MSE regressive loss functions respec-
tively.

For Sub-Task 2, for each configuration, 3 different runs
were selected, as explained in Section 2.2.

4. RESULTS AND DISCUSSIONS

On the official test results, each of the sub-task were evalu-
ated using Mean Squared Error (MSE) and Pearson Correla-
tion Coefficient (PCC). For Sub-Task 1, Table 1, the results
show a strong performance for Run 5, using a trained Deep
Network with Euclidean loss and no Audio descriptors. It is
closely matched by Run 4, the identical configuration using
MSE loss to train the Deep Networks. The Audio descrip-
tors have shown the weakest performance of them all, with
the possibility of increasing the errors of Runs 1 and 2, as
they use Audio fusion. In terms of Training loss functions
(EUC VS MSE), when comparing Runs 1 VS 2 and Runs
4 VS 5, there is a performance boost for Euclidean loss in
most cases, but only marginal. For Sub-Task 2, Table 2,
PLS gives lowest MSE but LR+4Gs gives highest results on
PCC. However all algorithms perform unacceptably bad on
Valence, a situation that requires further investigation.

S. CONCLUSIONS

In this working notes paper, we proposed a different frame-
work for each sub-task. The frameworks are composed on
feature extraction using deep learning, FDHH for capturing
Feature variations across the Deep Features at frame level,
and finally audio descriptors taken from the speech signal.
Several machine learning algorithms were also implemented
as a regression model. The official test results show that fea-
tures proposed by the framework are informative, give good
results in terms of MSE and PCC in sub-task 1 and good
results in terms of MSE in sub-task 2. The future work will
focus on the dynamic relationship of the emotion data.
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