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ABSTRACT
This paper provides a three-step framework to predict user assess-
ment of the suitability of movies for an inflight viewing context.
For this, we employed classifier stacking strategies. First of all,
using the different modalities of training data, twenty-one classi-
fiers were trained together with a feature selection algorithm. Final
predictions were then obtained by applying three classifier stacking
strategies. Our results reveal that different stacking strategies lead
to different evaluation results. A considerable improvement can be
found for the F1-score when using the label stacking strategy.

1. INTRODUCTION
A substantial amount of research has been conducted in recom-

mender systems that focus on user preference prediction. Here, tak-
ing contextual information into account can have significant posi-
tive impact on the performance of recommender systems [1].

The MediaEval Context of Experience task focuses on a specific
type of context: the viewing context of the user. The challenge
considers predicting the multimedia content that users find most
fitting to watch in a specific viewing condition, more specifically,
while being on a plane.

2. DATASET DESCRIPTION AND INITIAL
EXPERIMENTS

The dataset for the Context of Experience (CoE) task[5] contains
metadata and pre-extracted features for 318 movies [6]. Features
are multimodal and include textual features, visual features and au-
dio features. The training set contains 95 labeled movies, which
are labeled as 0 (bad for airplane) or 1 (good for airplane).

A set of initial experiments has been conducted in order to eval-
uate the usefulness of the various modalities in the CoE dataset [6].
A rule-based PART classifier was employed to evaluate the feature
performance in terms of Precision, Recall and F1 Score, the result
can be found in Table 1.

3. MULTIMODAL CLASSIFIER STACKING
Ensemble learning uses a combination of different classifiers,

usually getting a much better generalization ability. This particu-
larly is the case for weak learners, which can be defined as learning
algorithms that perform just slightly better than random guessing
by themselves, but can be jointly grouped into an algorithm with
arbitrarily high accuracy [2].
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Features used Precision Recall F1
User rating 0.371 0.609 0.461

Visual 0.447 0.476 0.458
Metadata 0.524 0.516 0.519

Metadata + user rating 0.581 0.6 0.583
Metadata + visual 0.584 0.6 0.586

Table 1: Results obtained by applying a rule-based PART clas-
sifier to the Right Inflight dataset.

Therefore, we were interested in taking a multimodal classifier
stacking approach to the given problem, and use a combination of
multiple weak learners to ‘boost’ them into a strong learner.

The process can be separated into three stages: classifier selec-
tion, feature selection and classifier stacking.

3.1 Classifier Selection
First of all , we want to select base classifiers that will be useful

candidates in a stacking approach. For this, we use the following
classifier selection procedure:

1. Initialize a list of candidate classifiers. For each modality,
we consider the following classifiers: k-nearest neighbor,
nearest mean, decision tree, logistic regression, SVM, bag-
ging, random forest, AdaBoost, gradient boosting, and naive
Bayes. We do not apply parameter tuning, but take the de-
fault parameter values as offered by scikit-learn1.

2. Perform 10-fold cross-validation on the classifiers. As input
data, we use the training data set and its ground truth labels,
per single modality. For the audio MFCC features, we set
NaN values to 0, and calculate the average of each MFCC
coefficient over all frames.

3. If Precision and Recall and F1-Score > 0.5, keep the candi-
date classifier on the given modality as base classifier for our
stacking approach.

The selected base classifiers and their relevant modalities can
be found in Table 2. It should be noted that the performance of
Bagging and Random forest is not stable. This is because
Bagging tries to use different subset of instances in each run and
RandomForest tries to use different subsets of instances and fea-
tures in each run.

3.2 Feature Selection
For each classifier and corresponding modality, a better-performing

subspace of features may optimize results further. Since we have
1http://scikit-learn.org/



Classifier Modality Precision Recall F1
k-Nearest neighbor metadata 0.607 0.654 0.630

Nearest mean classifier metadata 0.603 0.579 0.591
Decision tree metadata 0.538 0.591 0.563

Logistic regression metadata 0.548 0.609 0.578
SVM (Gaussian Kernel) metadata 0.501 0.672 0.574

Bagging metadata 0.604 0.662 0.631
Random Forest metadata 0.559 0.593 0.576

AdaBoost metadata 0.511 0.563 0.536
Gradient Boosting Tree metadata 0.544 0.596 0.569

Naive Bayes textual 0.545 0.987 0.702
k-Nearest neighbor textual 0.549 0.844 0.666

SVM (Gaussian Kernel) textual 0.547 1.000 0.707
k-Nearest neighbor visual 0.582 0.636 0.608

Decision tree visual 0.521 0.550 0.535
Logistic regression visual 0.616 0.600 0.608

SVM (Gaussian Kernel) visual 0.511 0.670 0.580
Random Forest visual 0.614 0.664 0.638

AdaBoost visual 0.601 0.717 0.654
Gradient Boosting Tree visual 0.561 0.616 0.587

Logistic Regression audio 0.507 0.597 0.546
Gradient Boosting Tree audio 0.560 0.617 0.587

Table 2: Base classifier performance on multimodal dataset.

multiple learners, we employed the Las Vegas Wrapper(LVW) [3]
feature selection algorithm for a feature subset selection. For each
run, LVW generate a list of random features and evaluate the learner’s
error rate for n times, and select the best performing feature sub-
space as output.

In our case, we slightly modified LVW to optimize F1 score,
where the original las vegas wrapper was developed for optimize
accuracy.

For each base classifier, with the exception of the random for-
est classifier (as it already performs feature selection), we apply
the LVW method, and achieve performance measures as listed in
Table 2.

3.3 Classifier Stacking
In previous research, classifier stacking (or metalearning) has

been proved beneficial for predictive performance by combining
different learning systems which each have different inductive bias
(e.g. representation, search heuristics, search space) [4]. By com-
bining separately learned concepts, meta-learning is expected to
derive a higher-level learned model that more accurately can pre-
dict than any of the individual learners. In our work, we consider
three types of stacking strategies:

1. Majority Voting: this is the simplest case, where we select
classifiers and feature subspaces through the steps above, and
assign final predicted labels through majority voting on the
labels of the 21 classifiers.

2. Label Stacking: Assume we have n instances and T base
classifiers, then we can generate an n by T matrix consisting
of predictions (labels) given by each classifier. Label com-
bining strategy tries to build a second-level classifier based
on this label matrix, and return a final prediction result for
that.

3. Label-Feature Stacking: Similar to label stacking, label-feature
stacking strategy uses both base-classifier predictions and
features as training data to predict output.

4. RESULTS
We considered all prediction results by the 21 selected base clas-

sifiers, and then applied the three different classifier stacking strate-
gies to the test data using 10-fold cross-validation. As results for
label stacking vs. label attribute stacking were comparable on the
training data, we only consider voting vs. label stacking on the test
data.

All obtained results, on the training (development) and test dataset,
are given in Table 3. On the training data, we notice significant im-
provement can be found in terms of Precision, Recall as well as F1
score in comparison to results obtained on individual modalities.
The voting strategy results in the best precision score, but has bad
performance in terms of recall. On the contrary, label stacking has
higher recall and the highest F1 score.

Considering results obtained on the test dataset, we can conclude
that label stacking is more robust than the voting strategy. For vot-
ing strategy, a significant decrease can be found in terms of preci-
sion on test set. This is because majority vote (and Bayesian aver-
aging) tendency to over-fit derives from the likelihood’s exponen-
tial sensitivity to random fluctuations in the sample, and increases
with the number of models considered. Meanwhile, label stacking
strategy performs reasonable well on test data.

Stacking Strategy Precision Recall F1
Voting (cv) 0.94 0.57 0.71

Label Stacking (cv) 0.72 0.86 0.78
Label Attribute Stacking (cv) 0.71 0.79 0.75

Voting (test) 0.62 0.80 0.70
Label Stacking (test) 0.62 0.90 0.73

Table 3: Classifier Stacking results.

5. CONCLUSIONS
In our entry for the MediaEval CoE task, we aimed to improve

classifier performance by a combination of classifier selection, fea-
ture selection and classifier stacking. Results reveal that employing
a ensemble approach can considerably increase the classification
performance, and is suitable for treating the multimodal Right In-
flight dataset.

The larger diversity of base classifiers is able to produce a more
robust ensemble classifier. On the other hand, a blending of mul-
tiple classifiers may also have some drawbacks, e.g computational
costs, and difficulty in traceable interpretation.

We expect better results for our method can still be obtained
through parameter tuning, and by applying more robust classifier
stacking methods, such as feature weighted linear stacking [7].
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