
DMUN: A Textual Interface for Content-Based Music

Information Retrieval in the C@merata task

for MediaEval 2016
Andreas Katsiavalos

De Montfort University
Leicester, UK

andreas.katsiavalos@gmail.com

ABSTRACT

This paper describes a text-based Question-Answering (QA)

system for content-based music information retrieval (MIR)

according to the C@merata task description [12,13].

1. INTRODUCTION
Content-based search of music information is an active

research area [4] with applications in education and general

musicological tasks. Apart from collections of music data such as

KernScores [11], even traditional library catalog servers can be

searched based on their content [7]. To access these data and

extract content-based information we developed a text query

parser that, given a sentence such as a C@merata question,

generates a script for music operations. The script contains the

music concepts and their relations as described in the query, but

in a structured form in such a way that workflows of specific

music data operations are formed. A parser then reads the script

and calls the corresponding functions from a framework we

created on top of music21 [6]. The questions tested are a sub-set

of 28 random selections from the complete set of questions.

An overview of the query system is given in section 2 with

more detailed descriptions of important concepts and procedures.

In section 3 we present the results of the algorithm with detailed

description and discuss them. Last, the conclusions are presented

in section 4.

2. APPROACH

2.1 Overview
Query parsing and music content operations are kept separate

and the only connection between them is through an intermediate

layer.

There are three major components of this approach are:

• A query interpreter

• The script language

• A music information workflow interpreter

The query interpreter resolves the query text into a script that

describes a music information workflow. This is a layered process

that required hard-coded knowledge about valid query terms and

types (see 2.2).

The script language consists of “information request”

statements that are formed by the clauses: “select”, “from” and

“where” having similar functionality as that described by the

Structured Query Language (SQL) (see 2.3).

The music information workflow interpreter connects the

script with a set of music-related functions that are built on top of

the music21 framework (see 2.4). discuss the development of the

question types over the past three years and in particular focus on

the more sophisticated methods adopted for question generation

this year. We will then present the participating systems for this

year and discuss the results which they obtained.

2.2 The Query Interpreter
The query interpreter is a class that is initalised with a

“language” file that contains information about valid terms, their

types, composite types and, composite type relations. Composite

types are music concepts and will be referred to as entities. This

file stores generic terms, but some values, e.g. names of the parts

are extracted from music data.

The terms of a query phrase can be:

• values,

• music concept/entity keywords, E,

• music concept/entity relation keywords, R.

For example, “dotted quarter note dominant 7th” is a chord

entity. Entities are further categorized into “content” and

“context” types. Although in the question set we tested, context

entities are the parts and measures and content entities are note,

rest, chord and simultaneity, it is the relation keywords that define

what is the search context and what is the target content. Relations

enable the transformation of the query into a structured request by

defining the context-content relation. The conditions are just the

entity attributes.

Some of the relation types that were identified in the tested

question set are shown below (the “<>” symbol means any type of

entity):

< > (" ") < > , <(duration, pitch, note, chord)>

< > ("followed by") < >, <(duration, pitch, note, chord)>

< > ("in", "in the") < > contextual and conditional

< > ("of", "of a") < >

< > ("parallel")

< > ("repeated") <> ("time","times")

< > ("between”, “between the") < > ("and") < >

< > ("against", "only against") < >

…

The terms of the query phrase are processed in layers starting

by identifying the type of each one. Next, composite types and

words are grouped into entities. After all the types are matched,

the entity relations are identified. Last, the query is converted into

an information request using “select-from-where” statements.

Copyright is held by the author/owner(s).

MediaEval 2016 Workshop, October 20-21, 2016, Amsterdam.

1. Load the language file

2. Parse the query

2.1 First pass: terms to types

2.2 Second pass: type groups and relations

2.3 Third pass: Content and Context identification

2.4 Fourth pass: Make information request

3 Run information request script with music framework

14 seven-note chord in the harpsichord

 context : parts, condition: instrument

 get type : chord

 condition : cardinality value

Figure 1. Example query analysis

2.3 Information Request using a Script
After the query phrase analysis a script that contains a

structured information request is generated by converting the

identified entities and their relations into a sequence of “select-

from-where” statements.

9 parallel thirds in measures 15-18
 FROM CONTEXT:
 SELECT measures
 FROM parts.all
 WHERE 15 <= measure.number <=18
 SELECT CONTENT
 SELECT chords
 FROM CONTEXT
 WHERE chord.type IS third
 WHERE (RELATION)
 parallel

14 seven-note chord in the harpsichord
 FROM CONTEXT:
 SELECT parts
 FROM parts.all
 WHERE part.name == “harpsichord”
 SELECT CONTENT
 SELECT chords
 FROM CONTEXT
 WHERE chord.cardinality = 7

Figure 2. Text parsing examples of a function calls

By ordering and nesting such statements, all the queries that

were tested were successfully converted into this workflow

representation.

The use of a “language” file is a way to pass knowledge to

the system about how to parse phrases. It contains:

• value collections grouped in primary types

◦ e.g. 15-18 is type range.int

• primitive types grouped in music concepts/entities

◦ “dotted quarter” is a duration entity

◦ “first inversion of a triad” is a chord entity

• Relation definitions

◦ groups of entities

2.4 Music Content Extraction
The structured information request that was described in the

previous section is parsed from a music information retrieval

interpreter that compiles an executable music21 script using

music21 functions such as “getElementByClass()” and a plethora

of features for music21.elements to compare with. Operating

within the music21 ontology, we can perform conditional part

selection, measure selection based on range, and get attribute

values for basic elements such as note, rest and chord type.

One way to avoid over-analyzing the query into complicated

information requests is to use more complex representations, such

as note-sequences (VIS) [1], or Directed Interval Classes [3] and

bypass low-level relations by transferring them to the

representation.

3. RESULTS AND DISCUSSION
These are preliminary results and the approach is under

development. In the rest of this section we discuss how queries

resolve into information requests and the difficulties in the

process.

3 octave leap in violin I

context : part, instrument type and number

get type : melodic interval, keyword "leap"

condition : interval value

5 Bb3, A3, G3, F3, E3

note,con:seq:comma, note, con:seq:comma, note, con:seq:comma,

note, con:seq:comma, note

context : complete piece ? separate parts ?

get type : pitch sequence

9 parallel thirds in measures 15-18

con:relation, interval_type, con:where:in, key, int:comp:range

context : measures

get type : chords:condition:thirds

condition : parallel

#10 authentic cadence in measures 14-18

cadence_type, key, con:where:in, key, int:comp:range

context : measures

get type : cadence

condition : cadence type

18 consecutive sixths between the Altos and Basses in

 measures 73-80

con:temp_relation, num:position, con:selection:between_the,

term, con:and, term, con:where:in, key, num:comp:range

context : measures, int-range

relation : between X and Y

 X type : part

 Y type : part

content : melodic sequence

condition : interval type

#22 flute dotted half note only against strings

term, duration:exp, duration, key, ? , con:temp_relation:against, ?

(find the string parts?) general_polyphony, pitch, on:where:

in_the, term, con:where:in, key, num:int, rule:direction

context : parts, instrument

type : duration, composite

 relation : only_against

 term : part group conditions > not empty ?

#29 flute, oboe and bassoon in unison in measures 1-56

term, term, con:and, term. conection:where-condition:in,

interval_type, context:where:in, int:comp,range

context : measures

context : parts, the instruments

type : notes

condition : same notes

#33 semibreve tied to a minim in the Bass clef

duration, con:notation:tied:tied_to_a, duration, con:where:in_the,

term, key=type

context : parts ? or measures ?

relation : <a> tied_to

a type : duration

b type : duration

44 four eighth notes in the bottom part

context : part, relative position

relation : sequence

 : number <durations,pitches,notes>

type : note, conditions: duration

63 C D E F D E C in semiquavers repeated after a

 semiquaver

context : all

relation : X repeated after Y

 X type : sequence, type: pitch-class

 X cond : duration

 Y type : duration

77 harmonic octave in the bass clef

context : measures, clef:

type : harmonic interval

Notice the assumption in defining the context that bass clef can

appear anywhere in the score and it does mean a complete part.

86 whole-note unison E2 E3 E4

context : all parts

type : chord, from notes in all parts

condition : pitch content

condition : duration

#94 crotchet tied to crotchet

context : single parts

relation : X "tied to" Y

 X type : duration

 Y type : duration

186 whole-note chord

context : single part ? all parts ?

type : chord

4. CONCLUSION
The C@merata task became very demanding this year;

however, this approach seems promising. The use of the

intermediate information level created space for interpretations

and generally allowed operations aimed at language

understanding. Natural language was avoided but this approach

seems to resemble natural language query patterns. Even if the

query language stays in a limited dictionary and syntax, as long as

it serves its purpose as an interface for information retrieval, it is

worth attention.

The “segmentation ontology” (Fields et al., 2011) is an

interesting idea. This work addresses large parts of the current

approach’s need for an ontology, it provides implementations in

RDF-OWL language for knowledge representations.

5. REFERENCES
[1] Antila, C., & Cumming, J. (2014). The VIS Framework:

Analyzing Counterpoint in Large Datasets. In Proceedings of

the International Society for Music Information Retrieval.

Taipei, Taiwan.

[2] Arzt, A., Böck, S., & Widmer, G. (2012). Fast Identification

of Piece and Score Position via Symbolic Fingerprinting. In

13th International Society for Music Information Retrieval

(pp. 433–438). Porto, Portugal.

[3] Cambouropoulos, E., Katsiavalos, A., & Tsougras, C.

(2013). Idiom-independent harmonic pattern recognition

based on a novel chord transition representation. In 3rd

International Workshop on Folk Music Analysis.

Amsterdam, Netherlands.

[4] Casey, M., Veltkamp, R., Goto, M., Leman, M., Rhodes, C.,

Slaney, M., & others. (2008). Content-based music

information retrieval: Current directions and future

challenges. Proceedings of the IEEE, 96(4), 668–696.

[5] Collins, T. 2014. Stravinsqi/De Monfort University at the

C@merata 2014 task. Proceedings of the C@merata Task at

MediaEval 2014.

[6] Cuthbert, M. S., and Ariza, C. 2010. music21: a toolkit for

computer-aided musicology and symbolic music data. In

Proceedings of the International Symposium on Music

Information Retrieval (Utrecht, The Nethlerands, August 09

- 13, 2010). 637-642.

[7] Dovey, M. J. (2001). Adding content-based searching to a

traditional music library catalogue server. In Proceedings of

the 1st ACM/IEEE-CS joint conference on Digital libraries

(pp. 249–250). ACM.

[8] Downie, J. S., & Cunningham, S. J. (2002). Toward a theory

of music information retrieval queries: System design

implications.

[9] Fields, B., Page, K., De Roure, D., & Crawford, T. (2011).

The segment ontology: Bridging music-generic and domain-

specific. In Multimedia and Expo (ICME), 2011 IEEE

International Conference on (pp. 1–6). IEEE.

[10] Lewis, D., Woodley, R., Forth, J., Rhodes, C., Wiggins, G.,

& others. (2011). Tools for music scholarship and their

interactions: a case study.

[11] Sapp, C. S. (2005). Online Database of Scores in the

Humdrum File Format. In ISMIR (pp. 664–665).

[12] Sutcliffe, R. F. E., Fox, C., Root, D. L., Hovy, E., & Lewis,

R. (2015). The C@merata Task at MediaEval 2015: Natural

language queries on classical music scores. In Proceedings of

the MediaEval 2015 Workshop, Wurzen, Germany,

September 14-15 2015.

[13] Sutcliffe, R. F. E., Fox, C., Root, D. L., Hovy, E. and Lewis,

R. (2015). Second Shared Evaluation of Natural Language

Queries against Classical Music Scores: A Full Description

of the C@merata 2015 Task. Proceedings of the C@merata

Task at MediaEval 2015. http://csee.essex.ac.uk/camerata/.

