
OMDN at the C@merata 2016 Task: Approaches to and
Issues Arising from Answering Natural Language

Questions about Music Scores
 Donncha S. Ó Maidín

Department of CSIS
University of Limerick

Limerick, Ireland
Donncha.OMaidin@ul.ie

ABSTRACT
The query is modeled as a parse tree where clauses from the query
form children of the tree’s root. Children of each clause, in turn
represent the query’s atomic units. A complete search involves
visiting all score objects that are potential starting points for a
match. Atomic units of the parse tree are compared, in sequence,
with corresponding score objects. From each score object,
appropriate paths are explored to find objects that match the
sequence of tree’s atomic units. The parse tree is traversed in a
depth first order. Iteration paths through the score follow either
vertical or horizontal routes, the former for chord or harmonic
interval comparisons, and the latter for melodic comparisons.
Iteration between clauses results in the selection of new score
staring points, appropriate to the temporal relationship between
clauses. Results were limited on account of problems with
importing some of the MusicXML files.

1. INTRODUCTION
A natural language query is first split into component queries

X and Y by scanning the query for one of the following
structures:

• X followed by Y
• X against Y
• simultaneous X and Y
• X at the same time as Y
• X followed [distance] by Y
• X

 For structures 1 and 5 queries X and Y are searched in

sequence, while for structures 2, 3, and 4, X and Y are searched in
parallel. Units within X or Y in turn result in sequential or parallel
searches between their contained atomic units. A sequential
search is involved where the atomic units in X or Y are notes of a
melody or melodic intervals; a parallel search is required where X
or Y contains notes of a chord or a harmonic interval.

Each atomic unit is represented by a template that contains
details of all the necessary requirements for a unit match with a
score object. An instance of an atomic unit may be a note, a rest or
it may specify a more complex object or texture such as an
arpeggio or scale. Templates also contain information on how
they are linked together. Lists of templates are used to represent
either sequential or parallel sets of notes or rests. Arpeggios or
scales are examples of more complex atomic objects that are

represented in single templates. In addition to carrying details of
the target entity for matching, a template also carries relevant
contextual information such as bar ranges, clef and instrument
designations wherever appropriate.

The following examples use [>], [^], [] to represent
respectively sequential [>], simultaneous [^] or terminal
relationships in nodes.

Figure 1. ‘D4 G4 in sixteenth notes’

Figure 2. ‘chord Eb Ab Bb’

Figure 3.‘D4 E4 F#4 followed by the chord B3 D4 G4

2. CPNView
Common Practice Notation View, or CPNView is used.

CPNView formed the main topic of the author’s PhD
dissertation[1]. The name CPNView was not used in the
dissertation, but appeared in later publications [2][3][4].

CPNView models a score as an objected-oriented container.
The CPNView model is designed to provide a value-neutral
representation of elements of the score notation. The score's
internal content is available using iterators. The iterator object
keeps track of the context in which an object resides in addition to
providing access to the score object itself through its member
functions. The iterators and their member functions can be viewed

Copyright is held by the author/owner(s).
MediaEval 2016 Workshop, October 20-21, 2016, Amsterdam.

as paralleling the actions of a human reader. Typically, a human
might access a score from the start and read through it serially in
time sequence. For some purposes the reader may traverse the
score along one of the staves. Where a harmonic or polyphonic
texture is of interest it is appropriate to access the score as a
sequence of vertical slices, in time order.

A score object is created by specifying a file path:

Score score(path);

This model requires no user knowledge of how the score is

represented. CPNView representations are built by importation
from files in a number of different standard encodings.

Access to the internals of the score is facilitated by an
iterator object:

ScoreIterator cursor(score);

or ScoreIterator cursor(score, 1);

The first instance creates an iterator that initially points to the

start and can be used to visit all of the objects in a score in time
order. This is an appropriate iterator for harmonic analysis. The
second form has an additional parameter and is used to iterate a
single stave; above the stave with identifier 1 is selected.

The iterator can step through all of the objects in the score
using the step member function. The step function returns a value
true following a test that the succeeding object exists. The
following code skeleton makes all objects available, in sequence
to any code that replaces the ellipsis.

while (cursor.step()) {...}

If it is required to visit only the notes in the score, a

parameter may be given to the step function as in the following
code to count the notes in a score.

long count = 0;

while (cursor.step(NOTE)) {count++;.}

A locate member may be used to place the score iterator in

an arbitrary position. For example the iterator may be positioned
at the start of bar 20 by means of

cursor.locate(BARLINE, 200);

The ScoreIterator object has a comprehensive range of

member functions to retrieve the information that is contained
within the score.

A query that searches for all of the D notes and prints details
of each note arrived at is achieved by

while (cursor.step(NOTE))

if (cursor.getAlpha() == 'D')

cout << cursor << “\n”;

CPNView also has a set of components that facilitate

processing musical information. They include container/iterator
classes for Lists, Sets and Stores.

A specialised class exists for calculating pitch class sets. The
pitch class object is based on the classification system of Alan
Forte[6], that has been modified for the classifying tonal sets,
such as those that occur in scales, modes and in harmony[2].

For processing each question, the initial phases consist of
two separate steps: (1) the importation of the music file to build a
CPNView representation of the score, and (2) the creation of a
tree of matching templates from the query text. Following these
input phases, the MusicXML file plays no further role. All
subsequent processing is performed on the CPNView
representation.

In the CPNView score representation, MusicXML layout and
‘division’ information is absent. XML fields for items such as
‘mode’ and ‘voice’ are discarded as well. Inclusion of such would
undermine the ideal of a neutral score representation. Instead of
relying on such added cues, the integrity of the analysis is best
maintained by practices similar to those employed by musicians.
For example voice leading, especially in keyboard scores, is best
garnered from visual cues such as note stem directions and from
knowledge of compositional principles. The challenge involved is
to build software that mimics music expertise.

As outlined in the abstract and in the introduction above, a
tree is built from the question text, with a template at each tree
leaf that contains matching criteria for each atomic element of the
search. An example is where a template is used for matching a
note or a rest in the score. Such templates may additionally
contain contextual information relating to factors such as bar
range, clef and key signature identity. Note and rest templates may
be grouped into larger clauses, corresponding to lists in the
original query such as ‘A4 C5 F4’. Such lists are used for both
sequential and harmonic searches. Other types of query clauses
contain single items such as Alberti basses, pedals, cadences,
textures and also named chords corresponding to texts such as
‘tonic’ or ‘IIa’. Each such clause is matched against a score by a
specialized component.

A single query with search text ‘A B’ is performed as
follows. For illustration purposes, the score is assumed to have
only one stave containing a single melodic line:

1. Score is imported into CPNView.
2. A search tree is created with two template nodes, the first one

for identifying the note ‘A’ and the second for ‘B’.
3. A score iterator ‘SI1’ is created and positioned at the first

note of the score.
4. ‘SI2’, a copy of ‘SI1’ is created.
5. If the note at ‘SI2’ is not ‘A’, move to (9).
6. Advance ‘SI2’ to the next note.
7. If the note ‘SI2’ is not ‘B’, move to (9).
8. Output the result.
9. Finish if no more notes are available, else increment ‘SI1’ to

point to the next note and then go to (4).

The code that implements a generalized version of the above

is more complex. It handles note lists of any size, handles search
ranges corresponding to query text entries such as ‘between bars 5
and 6’ or ‘in the soprano’ and handles multiple staves and
multiple sequential paths such as is found in keyboard music.

Components are available for the recognition of vertical
combinations of notes and for other constructions such as those
corresponding to texts such as ‘major triad’, ‘dominant chord’ and
‘perfect cadence’. In some cases components may invoke other
components. For example the component to identity cadences will
also invoke key-finding as well as chord-identifying components.

While examples of coding that do substantial work are too
long for inclusion here, the following is used to give a flavor of
how CPNView programming works. It is based on one existing
component used to check if the score iterator position in cursor is

within the query template range. The template is called templ, and
the range is between the values in startBarNo and endBarNo. The
cursor object has a member function called getCurrentBarNo()
that retrieves the relevant bar number for the iterator. Where no
range is specified the template fields have a value of -1.

bool filterRange(ScoreIterator & cursor, Template templ)

{

 long scoreBarNo = cursor.getCurrentBarNo();

 if (templ.startBarNo != -1 &&

 thisBarNo < nrst.startBarNo) return false;

 if (nrst.endBarNo != -1 &&

 thisBarNo > nrst.endBarNo) return false;

 return true;

}

The existing function used is a bit more complicated in order

to allow for variation in the ways that bar numbers get counted in
the MusicXML scores used in C@merata.

All of the software is deterministic. Templates are formed
from the queries and in cases where a query has not been
envisaged beforehand no action takes place. The structure of
queries is based largely on examples from the task description.

The execution of queries in some cases involves taking
‘unsafe’ short cuts that have worked with previous C@merata
challenges. For instance the identification of melodic segments is
done in a relatively unsophisticated way, by searching for
unbroken sequences of notes of sufficient length, bounded is some
way, such as by rests. This does not take into account the full
range of possibilities for melody structuring. Also key
identification is performed using the short cut of examining final
chords and key signatures. One interesting challenge is presented
in question1 59, ‘passing modulation to B minor’. Answering this
query requires a tonality-tracking component. Another
challenging case can be found in question 12, ‘imitation between
Sopranos and Clarinet in measures 110-119’, that requires the
implementation of a melodic similarity algorithm.

3. MATCHING QUERY TO SCORES
The complexity of processing a search depends on both the

score and on the nature of the query. An otherwise simple task
applied to the score of a hymn tune might prove complex when
applied to a piano score or to a score with transposing
instruments. Some of the issues identified are listed below:

1. Query ‘A3’. This specifies one of the simplest possible

search tasks. However when applied to a score with
transposing instruments, it yields two valid interpretations.
The issue is whether the search is for a notated or for a
sounding A3.

2. Query ‘Bb4 G4’. This is a simple query when applied to a

score with monophonic staves. Were it used to search a score
with multiple simultaneous notes on some of the staves, an
issue arises on whether or not voice-leading considerations
are taken into account when identifying all Bb4 that are
adjacent in time to G4. Where voice leading is not taken into
account the query ‘Bb4 G4’ applied to Figure 1 below would
yield [3/4,2,23:1-23:2]. The nub of the problem here is that
much keyboard writing is based on historic practices of part
writing from previous centuries. In the Scarlatti score
fragment below, three parts or voices may be identified with
pitch sequences (Bb4 C#5 D5 E5 F#5 G5) in the top part,
(G3 B4 F4 E4 D4 C#4) in the middle part and (G3) in the
lower part. Hence the answer [3/4,2,23:1-23:2] is incorrect.

3. A search in the fig.4 score for G3 B4 F4 E4 D4 C#4 should
yield [3/4,2,23:1-23:6], although this solution is forbidden in
the current C@merata rules that prohibit the identification of
melodic sequences between notes on different staves, a rule
that is reasonable, provided it is not applied to keyboard
notation.

Figure 4. Scarlatti_k30 taken from C@merata 2015.

4. Search texts such as ‘tonic triad’ or ‘triad of E major’ where

the component notes have a common starting and ending
point, with no other pitch class present, are relatively easy to
handle. However there are many cases where the identity of a
chord can be maintained although notes foreign to it are
present. Suspensions, retardations, passing notes either
accented or unaccented, and pedals or inverted pedals are
such cases. Context plays a major role here. Metrical
considerations and the behavior of preceding or following
notes have to be taken into account.

5. Keyboard scores present additional challenges for voice-
leading and chord identification tasks. In many cases the
music textures can be viewed as having an underlying
traditional 4-part harmonic structure, when instrumental
idioms such as octave doubling and the spreading out of
chords and crossing of staves are allowed for. Figure 4 shows
a case where the middle melodic line moves from bass to
treble clef. Figure 5 illustrates that use of spread out chords
that conform to good voice leading rules.

Figure 5. Mozart piano sonata no.5, first movement.

The melody has a chordal accompaniment with G major root
position in bar 1, D dominant seventh second inversion in
bar 2 continued into bar 3 but falling its first inversion and
returning to G major in bar 4.

There is a clear bass line G in bar 1 A in bar 2, F# in bar 3
and G in bar 4.

Two middle parts can be identified, the upper one on D
throughout, and the lower one with B in bar 1, C in bar 2, A
in bar 3 and B in bar 4. All of these lines are well behaved,
avoiding forbidden parallelisms. Similar considerations are
relevant to instance Alberti basses and some arpeggios.

6. The C@merata exercise provides an opportunity for testing
definitions of music terms. The question arises regarding the
meaning of some music terms. A designer of recognition of
software might start with a definition from a music
dictionary. While a dictionary definition gives necessary

conditions, they frequently leave borderline cases
unresolved, or hedge around a definition with words like
‘usually’ or ‘normally’. The definition of ‘chord’, for
example may include statements such as that it ‘usually
contains more than two notes’. This reveals that there is a
level of complexity involved that cannot be put into a
concise manner suitable for a dictionary definition. An
exploration of the use of composition textbooks could prove
beneficial.

One way of examining some of the issues here is to attempt

to find how musicians conceptualise a term.
A short exploration of some of the issues involved is

undertaken here in an attempt to design a recognizer for
‘arpeggio’, using instances from questions in C@merata 2015 and
2016.

One music dictionary definition of ‘arpeggio’ is:

“A chord ‘spread’ – i.e. the note heard one after the other
from the bottom upwards, or sometimes from the top
downwards.” [5].

Interestingly, the answers in the Gold Standard 2015 are in

accordance with the dictionary definition.
While the definition seems to meet the necessary conditions

for an arpeggio, the question arises whether the definition is
sufficient. It depends on the meaning of ‘chord’ that itself can be
somewhat problematic, allowing for the possibility of a two-note
arpeggio. Additionally, if an arpeggio-like construct is part of a
larger structure, such as a broken chord, can it still be regarded as
an arpeggio?

In a brief exploration, responses were elucidated from five
practicing musicians to extracts used in C@merata questions. All
respondents professional musicians with keyboard competence
and were mainly from the teaching community. Two have
substantial composing experience. The respondents were not
initially aware that arpeggio recognition was at issue.

 x x

Figure 6. clementi_sonatina_op36_no1_v2

 x x

Figure 7. bach_violin_sonata_no1_bwv1001_presto

 x x

Figure 8. mozart_an_chloe_k526

 x x

Figure 9. sonata02-4

Figure

s

Initial Responses

‘arpeggio’

Arpeggio Appropriate

4 20% 60%

5 20% 100%

6 80% 100%

7 80% 100%

Table 1. Participant responses to arpeggios in Figures 4-7

The majority of the respondents agreed with the designation

except in the case of figure 6. Two of the participants
conceptualized an arpeggio as having at least four notes, requiring
one octave to be present. One found the term ‘broken chords’ to
be more appropriate to the configuration in figure 6.

Following this two cases were presented where the arpeggio
candidate notes lay in larger context. In the first case the
candidate arpeggio was three notes within a melodic line; in the
second case it lay in a larger broken chord context.

 x x

Figure 10. clementi_sonatina_op36_no1_v2

 x x

Figure 11. bach_violin_sonata_no1_bwv1001_presto

Figure

s

Agree Arpeggio

Designation

10 40%

11 40%

Table 2. Participant responses to arpeggios in Figures 10-11

The opinion of the majority was not in agreement with the

dictionary definition of ‘arpeggio’. Interesting both ‘yes’
respondents said that they did not make a great distinction
between ‘broken chords’ and ‘arpeggios’, while the ‘no’
respondents did. Excluding the respondents that were ambivalent
about this distinction would have resulted in both figures 10 and

11 from being excluded from the category ‘arpeggio’ by all of
remaining respondents.

This exercise highlights a problem in the creation of
recognition algorithms. It would make for an interesting
investigation to test instances of performed music for the
identification of features such as arpeggios.

4. FUTURE CHALLENGES FOR SCORE

SEARCHING
Solving C@merata queries involve challenges in both the

interpretation of natural language concepts and in music analysis.
Music XML score representation is poorly structured. The lack of
basic one-to-one correspondences from score objects to Music
XML entries is at the root of many problems. One other
requirement is that score entities are modeled in an objective way,
a requirement not met by the Common Music Notation part of
MEI [6].

The following points should be considered in the design in
the future of C@merata. They focus on acquiring experience on
the fundamental fabric of music scores.

1. Voice leading: Explore the applicability of the rules of

counterpoint. Initially use only vocal or other scores with one
voice per stave. Focus the tasks on the first four species of
counterpoint, by basing questions on cases such as parallel
fifths and octaves, exposed octaves, sequences of thirds and
fifths, false relations and others.

2. Harmony: Explore the problems of identifying chords with
foreign notes present.

3. Devote only a small number of questions to keyboard scores.
4. For keyboard scores provide questions to identify the

underlying harmonies in broken chords.
5. In keyboard scores use questions to explore underlying voice

leading.

5. PRACTICAL CONSIDERATIONS
A number of steps are proposed on how C@merata might be

improved in future.

1. Ensure Music XML sources are error-free: In both the 2015
and 2016 challenges many scores were found with errors and
omissions. 14 of the 20 2016 scores could not be processed
initially in CPNView. While it has not been possible to
identify problems to date, it was possible to hand-edit some
scores to make them useable. ‘Eroica’, ‘Weep, O mine eyes’
and ‘Am die Musik’ had no time signatures. An additional
mid-bar measure number appeared in bar 5 of Chor002. In
Sonata02-4 tuplets were not properly formatted, and
sextuplets were incorrectly encoded; grace note heads appear
as whole notes. Strange part and voice numbers appear in
quartet10-3_m21i, Inven01_m21, quartet10-3_m21,
quartet12-1_m21, sometimes in a form that looks like 32-
character hexadecimal numbers, where numbers such as 1, 2
and 3 are normal in Music XML.

The 2015 scores fared a bit better, but problems were found
including scores with invalid bar lengths, missing rests, bar
numbering and others.

Much of this can be avoided by circulating scores to
participants well in advance of the C@merata challenge so

that feedback is available to correct and determine suitability.
Previously used scores that have proved satisfactory could be
re-used with new questions without compromising
challenges in any way.

2. Gold Standard: An intensive study of the 2015 challenge

questions revealed problems with the contents of the Gold
Standard document: The answers for approximately 4% of
the questions were incorrect, while an approximately 15%
more valid answers were absent from the Gold Standard
document. Careful visual inspection of each answer in the
score in conjunction with adherence to the guideline
document should minimize or eliminate the presence of
incorrect answers if done in time, before the challenge is
activated. The detection of missing answers will prove much
more difficult. By publishing the Gold Standard following
the deadline for submitting answers and giving participants a
role in formulating revisions followed by re-scoring of all
answers should be considered. Alternate to this is the
evaluation of all answers that are classified as incorrect
against the printed score.

6. REFERENCES
[1] Ó Maidin, D.S. 1995. A Programmer's Environment for

Music Analysis. PhD Thesis, University College Cork, 1995.

[2] Ó Maidin, D.S. and Cahill, M. 2001. Score Processing for
MIR. In Proceedings of the International Society for Music

Information Retrieval, Bloomington, Indiana 2001, pp.59-
64.

[3] Ó Maidin, D.S. 1998. A Geometrical Algorithm for Melodic
Difference. In Computing and Musicology II. Melodic

Similarity. Concepts, Procedures, and Applications, ed

Walter B. Hewlett and Eleanor Selfridge-Field (Cambridge
Massachusetts and London, The MIT Press, 1998), pp. 65-
72.

[4] Forte, A. 1973. The Structure of Atonal Music. (New Haven
and London: Yale University Press, 1973).

[5] Sholes, P.A. 1974. The Concise Oxford Dictionary of Music.
(London, Oxford University Press).

[6] Music Encoding Initiative Guidelines, Version 3.0.0. on
http://music-encoding.org/downloads/guide

