
A Spatio-Temporal Database Model on Transportation 

Surveillance Videos 

Xin Chen and Chengcui Zhang 
Dept. of Computer and Information Sciences, University of Alabama at Birmingham, 

Birmingham AL 35294, USA 
{chenxin, zhang}@cis.uab.edu 

Abstract

With the rapid growth of multimedia data, there is 
an increasing need for robust multimedia database 
model. Such a model should be able to index 
spatio-temporal data thus efficient access to data 
whose geometry changes over time can be 
provided. In this paper, a spatio-temporal 
multimedia database model for managing 
transportation surveillance video data is proposed. 
The objective is to build a spatio-temporal database 
schema for transportation surveillance videos, in 
which queries can be answered easily and 
efficiently. The proposed spatio-temporal model 
for transportation surveillance videos combines the 
strength of two general-purpose spatio-temporal 
multimedia database models - the Multimedia 
Augmented Transition Network model (MATN) 
and the Common Appearance Interval (CAI) 
model. While MATN model is good at modeling 
the replay of the multimedia presentation and the 
spatial-temporal relations of semantic objects in the 
video, it is not efficient in modeling or querying 
the trajectories of moving objects. In the mean 
time, while Common Appearance Interval (CAI) 
model can be used to better answer trajectory-
based queries, it explicitly stores the spatial 
relations of pairs of objects in the model, which is 
considered redundant in transportation video 
databases. The proposed model bases its structure 
on MATNs and adopts the concept of CAI to 
segment transportation surveillance videos. Since 
this model is motivated by transportation 
surveillance applications, it has some domain 
specific features. It models each traffic light phase 
in a MATN-like network and models the 
corresponding video segment using CAIs. In 
addition, CAIs are further divided into sub-
intervals and modeled by the sub-network structure 
in MATNs. In this paper, the proposed model, 
together with a brief introduction of the vehicle 
extraction/tracking/classification, is presented with 

its formal definition and some sample queries. The 
advantages of our model in comparison with other 
models are also demonstrated. 

1. Introduction 
While spatio-temporal applications (Intelligent 
Transportation Systems, health, climate changes, etc.) 
have only recently attracted researchers in this field, most 
of the existing work has concentrated on general-purpose 
spatio-temporal database models and query 
languages[2][3][5][6]. The existing models all have their 
advantages in modeling certain aspects of the data. 
However, none of them are “jack-of-all-trades” without 
any redundancy or lost of any efficiency. Since different 
spatio-temporal applications may have different emphasis 
on the properties and queries of the domain-specific data, 
there is a need for designing domain-specific spatio-
temporal database model. 

In building an intelligent transportation system, a large 
amount of transportation surveillance videos are collected 
via surveillance cameras. Various algorithms are proposed 
to analyze these video data. However, it is still a 
challenge to store and manage these videos with an 
efficient indexing and querying schema. In addition, it is 
necessary to build an integrated system that captures a 
comprehensive set of requirements which are needed in 
building a transportation surveillance video database. 
Such requirements include the extraction of vehicle 
objects from surveillance videos, vehicle tracking, vehicle 
classification, and spatio-temporal modeling that provides 
efficient data indexing and querying for transportation 
domain. To our best knowledge, there is no such system 
in this field that is sophisticated enough to manage video 
data efficiently in transportation surveillance domain. One 
of the research directions in spatio-temporal database 
management is to incorporate data streams and evaluate 
continuous queries over data streams [9] [10] [11]. For 
example, in [9], Mouza et al. proposes a data model for 
reporting continuous queries based on mobility pattern 
matching. Continuous queries are managed as a discrete 
process relying on events related to the moves of objects. 
Several general-purpose spatio-temporal models for video 
databases are proposed in [2][3][5][6]. However, since 
different spatio-temporal applications may have different 
emphasis on the properties and queries of the domain-
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specific data, there is still a need for designing domain-
specific spatio-temporal models. In this paper, we 
proposed a spatio-temporal multimedia database model 
for storing, indexing, and querying transportation 
surveillance videos. It is worth mentioning that the 
proposed work focuses on designing a conceptual model, 
which serves as a basis for defining entities, attributes, 
and relationships. As this is our initial work, details such 
as GUI interface, physical layers, access strategy or 
operations will be addressed separately in our future 
work. 

In our previous work, we proposed a vehicle 
extraction, vehicle tracking, and vehicle classification 
framework [4] [8] for indexing transportation surveillance 
videos. With this framework, each distinct vehicle can be 
automatically identified at diffident locations in a video 
frame. The object-level information such as the bounding 
box and the centroid can be recorded and stored in the 
database for future queries. However, it would be 
unnecessary to record such information in each frame as it 
will introduce a lot of redundancy in the database. 
Therefore, an intuitive method is to segment a video into 
meaningful segments and only record the “key frames”. 
Transportation surveillance video segmentation is not as 
easy a task as that for regular videos such as movies, since 
it is hard to detect video shots or events in the continuous 
transportation surveillance video sequences. In L. Chen’s 
CAI model [2], a video segmentation concept -- Common 
Appearance Interval (CAI) is proposed, which has some 
flavor of a video shot in a movie. In this concept, each 
video segment is endowed with some “semantic” meaning 
in terms of temporality and spatial relations. This concept 
is adopted in the proposed model in this paper. In L. 
Chen’s CAI model, the spatial relations of pairs of objects 
are recorded. This makes it convenient to query the spatial 
relation of two objects. However, if there are n objects 
appearing in the frame, there will be Cn

2 pairs of records 
in the database. Since the spatial relations of vehicles are 
not the frequent query targets in the transportation video 
database, this will introduce a lot of redundancy. In this 
paper, we follow the basic idea of S.-C. Chen’s MATN 
(Multimedia Augmented Transition Network) model [3] 
in solving this problem. 

MATN model is good at modeling the replay of 
multimedia presentations. It also provides an efficient 
mechanism in modeling the spatial relations of semantic 
objects in the video. One disadvantage of MATN is that it 
cannot be efficiently applied to modeling the trajectories 
of moving objects. However, trajectories of vehicles are 
often queried in a transportation video database. 
Therefore, in our model, MATN is adjusted to suit our 
specific needs. 

The MATN model proposed by S.-C. Chen [3] and L. 
Chen’s CAI model [2] are two general-purpose models. 
Our proposed model combines the strength of these two 
models. We base our structure on MATN and adopt the 
concept of CAI to segment traffic videos. Motivated by 

our specific application, our model has some features 
neither of the two general-purpose models has. The 
proposed model models each traffic phase in a MATN-
like main network and models the corresponding video 
segment using CAIs. While the main network models the 
spatio-temporal relations of vehicle objects at a coarser 
level, CAIs can capture more details of such relations. In 
addition, since MATN uses the concept of Multimedia 
Input Strings (MISs) as the input of an MATN model, we 
further extend its definition to model CAIs in MATN’s 
main network. CAIs are further divided into sub-intervals 
and modeled by the sub-network structures in MATNs. 
The direction information of a moving vehicle rather than 
the spatial relation between two vehicle objects is 
recorded in our model. This is due to the fact that 
transportation video database queries are more often 
concerned with a moving vehicle’s driving direction than 
its spatial relation with another object. We argue that in 
this type of applications, there is no need to store a huge 
amount of redundant information that is not often queried. 

Some background information on transportation 
surveillance video processing is introduced in Section 2. 
The proposed model is formally defined in Section 3. 
Section 4 shows query methods and some sample queries. 
Section 5 analyzes the advantages of the proposed model. 
Section 6 concludes the paper. 

2.   Transportation surveillance video 

processing

In this section, the processing of transportation 
surveillance videos is introduced to provide some 
background information on building an intelligent 
transportation system. In our previous work [4], an 
unsupervised segmentation method called the 
Simultaneous Partition and Class Parameter Estimation 
(SPCPE) algorithm, coupled with a background learning 
and subtraction method, is used to identify the vehicle 
objects in a traffic video sequence [8]. The technique of 
background learning and subtraction is used to enhance 
the basic SPCPE algorithm in order to better identify 
vehicle objects in traffic surveillance videos. Figure 1 
shows an example of the segmentation result of a vehicle 
with background extracted. The rectangular area is the 
Minimal Bounding Rectangle (MBR) of the vehicle that is 
represented by (xlow, ylow) and (xhigh, yhigh) -- the 
coordinates of the bottom right point and the upper left 
point of the MBR. (xcentroid, ycentroid) are the coordinates of 
that vehicle segment’s centroid. It is used for tracking the 
positions of vehicles the across video frames. 

Figure 1 An example vehicle segment. 

(xcentroid, ycentroid)

(xlow, ylow)

(xhigh, yhigh)

18



The framework in [4] has the ability to track moving 
vehicle objects (segments) within successive video 
frames. By distinguishing the static objects from mobile 
objects in the frame, tracking information can be used to 
determine the trails of vehicle objects. The last phase of 
the framework is to classify vehicle objects into different 
classes such as SUVs, pick-up trucks, and cars, etc. The 
classification algorithm is based on Principal Component 
Analysis. 

With this framework, lots of useful data and 
information is generated. This provides a basis for an 
intelligent transportation system. The whole process is 
automatic. In this paper, a spatio-temporal database model 
is proposed to further organize, index and query these 
information. 

3.   Model definition 
While the proposed model is a combination of S.-C. Chen 
et al.’s MATN model [3] and L. Chen’s CAI model [2], 
its general structure is based on MATN. Therefore, in this 
section, we will start from introducing the basic idea of 
MATN model. Following that, the formal definition of 
our model is presented. 

3.1   MATN model 

Multimedia Augmented Transition Network (MATN) 
model originates from the Augmented Transition Network 
(ATN) [1] which is used for natural language processing. 
The inputs of an ATN are sentences that are composed of 
words. Similarly, in MATN, the inputs are Multimedia 
Input Strings that can be denoted by regular expressions. 
An MATN model simulates a finite state automaton in 
that it is constructed by nodes (states), arcs, inputs and 
transition functions. However, unlike finite state 
automaton, MATN allows recursions and has the 
condition/action tables. Recursions allow the user to play 
the desired video segments repeatedly. Condition/action 
tables are especially useful in an online environment. 
With the limitation of bandwidth, the user can choose to 
play some parts of the video when condition permits or 
get compressed version of the video. That is, an MATN 
can control the synchronization and Quality of Service 
(QoS) of multimedia streams. Another important feature 
of an MATN is its support for sub-networks. These 
features of MATN make it more powerful and effective 
than finite state automaton. It is worth mentioning that 
MATN not only can be used to model the spatio-temporal 
relations of multimedia streams in multimedia 
presentations but also can support multimedia database 
searching when spatio-temporal relations of multimedia 
objects are concerned. In this paper, we focus on the 
spatio-temporal modeling and multimedia database 
searching capability of MATN models. 

3.2   The proposed model 

MATN is a general purpose spatio-temporal model. To 
fit the specific needs of transportation video modeling, the 
original MATN model needs to be adjusted. This is for 

the ease of searching and querying the transportation 
video database. For example, velocity and driving 
direction are two very important properties of a moving 
vehicle but they are not explicitly modeled in a MATN 
model. In L. Chen’s CAI model, a concept called 
Common Appearance Interval is defined to model an 
interval where a certain set of objects appear in the frame 
together. We incorporate this concept into our model. 
CAIs can be automatically generated from the tracking 
and segmentation phase.In the proposed model, moving 
vehicles are explicitly modeled, which correspond to the 
moving objects in CAI model. A Common Appearance 
Interval is further broken down into sub-intervals in 
which the relative positions (as defined in MATN models) 
of vehicles remain unchanged. 

In MATN models, the spatial relations of moving 
vehicles are recorded based on 27 three dimensional 
relative positions. That is, the 3-D space is evenly divided 
into 27 positions with one of them being the reference 
position. The coordinates of moving vehicles are then 
compared with this reference position to decide their 
relative positions. The details of these 27 positions are 
shown in Figure 2, where position #1 is the reference 
position. The first and the third columns indicate the 
relative position numbers, while the second and the fourth 
columns are the relative coordinates. (xt

,, yt, zt) and (xs, ys,
zs) represent the X-, Y-, and Z-coordinates of the 
reference position and the position of a vehicle object, 
respectively. The ‘ ’ symbol means the difference 
between two coordinates is within a threshold value. For 
example, the relative position number 25 indicates an 
object’s X- and Y-coordinates (xs and ys) are greater than 
that (xt, yt) of the reference position, while their Z-
coordinates are approximately the same. We adopt this 
approach in modeling the spatial relations of moving 
vehicle objects. In the proposed model, the center of a 
video frame is chosen to be the reference position and 
each vehicle object is mapped to a point object 
represented by its centroid as illustrated in Figure 1. The 
centroid point of each vehicle object is then used to derive 
the relative position of that object to the reference 
position. However, it is worth mentioning that we only 
use the 2-D relative positions in MATN models as the z
values (or the depth information) of all vehicle objects in 
a 2-D video sequence are zeros. Therefore, there are only 
9 relative positions in our model, which are used to record 
the relative positions of vehicles in a video frame at a 
coarse granularity. More or fewer numbers may be used 
to divide an image or a video frame into sub-regions to 
allow more fuzzy or more precise queries as necessary.  

For this specific application, the driving direction of a 
vehicle is also recorded. However, there is no need to 
record this information for all video frames as this will 
introduce a large amount of inter-frame redundancy. Only 
the changes of directions between intervals are computed 
and recorded in the proposed model. 
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Before the formal definition of the proposed model is 
presented, we first define the terms and concepts that will 
be used in the rest of the paper. 
Definition 1. A Vechile Object (VO) is a 3-tuple (OID, 

MBR, VSFs). ID is the unique identifier of a distinct 
vehicle in the database. MBR is the Minimal Bounding 

Rectangle of the Vehicle Object. (xlow, ylo, zlow) and (xhigh,
yhigh, zhigh) are the 3-D coordinates of the bottom right 
point and the upper left point of the rectangle. The 
coordinates of the centroid of the MBR is used to 
determine the object’s relative position in 27 positions. 
However, since only 2-D information is available, we will 
use the 9 positions as shown in Figure 2 only. VSFs stands 
for Vehicle Segment Features, which can be used for 
vehicle classification and tracking purpose. In our 
previous work [4], a set of vehicle features based on 
Principle Component Analysis was proposed actually 
used in our vehicle classification framework to decide the 
vehicle type (cars, pick-up trucks, SUVs, etc.) 

Definition 2. Traffic Light Phase (TLP) is a segment of 
the traffic video during which there is no traffic light 
change. It is denoted by a 4-tuple (PID, PSF, PEF,
META). PID is the ID of the video segment. PSF is the 
starting frame of the traffic light phase; PEF is the ending 
frame of the phase; META is the meta-data of this phase. 
It includes the allowed driving directions, the duration of 
the phase, etc. 

Definition 3. Traffic Video Clip (TVC) is a contiguous 
trunk of traffic video. It consists of TLPs and can be 
denoted as a 2-tuple (CID, META). CID is its clip ID. 
META is the meta-data of this clip which can include such 
information as the time the clip is shot, the 
road/intersection location, camera settings, etc. 

TVCs, TLPs and VOs are the constituting units of a 
transportation surveillance video database with VO being 
the smallest unit. Next we will give the formal definition 
of the proposed model and explain in detail how it can be 
used for transportation video database modeling. 

Number Relative Coordinates Number Relative Coordinates Number Relative Coordinates

1 xs xt, ys yt, zs zt 10 xs<xt, ys yt, zs zt 19 xs>xt, ys yt, zs zt

2 xs xt, ys yt, zs<zt 11 xs<xt, ys yt, zs<zt 20 xs>xt, ys yt, zs<zt

3 xs xt, ys yt, zs>zt 2 xs<xt, ys yt, zs>zt 21 xs>xt, ys yt, zs>zt

4 xs xt, ys<yt, zs zt 13 xs<xt, ys<yt, zs zt 22 xs>xt, ys<yt, zs zt

5 xs xt, ys<yt, zs<zt 14 xs<xt, ys<yt, zs<zt 23 xs>xt, ys<yt, zs<zt

6 xs xt, ys<yt, zs>zt 15 xs<xt, ys<yt, zs>zt 24 xs>xt, ys<yt, zs>zt

7 xs xt, ys>yt, zs zt 16 xs<xt, ys>yt, zs zt 25 xs>xt, ys>yt, zs zt

8 xs xt, ys>yt, zs<zt 17 xs<xt, ys>yt, zs<zt 26 xs>xt, ys>yt, zs<zt

9 xs xt, ys>yt, zs>zt 18 xs<xt, ys>yt, zs>zt 27 xs>xt, ys>yt, zs>zt

Figure 2 Three dimensional relative positions for vehicle objects. 

3.3   Formal Definition of the proposed model 

For convenience, we call the proposed model TVDM 
(Transportation Video Database Model). TVDM can be 
formally defined as follows. 
Definition 4. A TVDM is an 8-tuple ( ,m ,s ,  ,

,mQ ,sQ ,F S ). sm , are the alphabets of the traffic 

video streams that can be expressed by regular 
expressions. The meaning of the regular expression 
symbols used in this model is illustrated in Table 1. 

Table 1. Meaning of Regular Expression Symbols 
Symbol Meaning 

Unquoted Characters Non-terminal symbols 
‘…’ Terminal symbols 

=  Is defined as 
[…] Optional symbols 

{…}+ One or more repetitions 
{…} Zero or more repetitions 

& Concurrent 
…|… Or 

; Rule terminator 
,  Concatenation 

[c1 – c2] ASCII Characters 

1. m  is the Transportation Video Stream alphabet in the 

main network. A Transportation Video Stream in the main 
network is a Common Appearance Interval (CAI) as
proposed in L. Chen’s CAI model [2]. A CAI is an 
interval in which vehicle objects VO1, VO2, …, VOm

appear all together. A new CAI starts when there is a new 
vehicle appears in the video or an old one disappears in 
the video or both. Therefore, a CAI is a media stream that 
can be expressed in regular expressions, 

CAI = CID, PID, CAID, {OID, [‘&’]}; 
CID = ‘C’, {‘0’-‘9’}; 
PID = ‘P’, {‘0’-‘9’}; 
CAID = ‘CA’, {‘0’-‘9’}; 
OID = ‘O’, {‘0’-‘9’}; 

where ‘&’ means concurrent appearance of multiple 
vehicle objects, CID, PID, CAID, and OID stand for the 
ID’s of Clip, Phase, CAI and Object(s).

2. s  is the Transportation Video Stream alphabet in the 

sub-network. A Transportation Video Stream in the sub-
network corresponds to a sub-interval of a CAI. In the 
proposed model, sub-network models a CAI in a way that 
a CAI is further divided into sub-intervals. In each sub-
interval, the relative positions of all objects in the CAI

remain unchanged. We call such an interval CAIsub.
Therefore, we have 

CAIsub = CID, PID, CAID, CAISUBID, {OID, (‘1’ | ‘2’ | …| 
‘27’), (‘N’ | ‘NW’ | ‘NE’ | ‘S’ | ‘SW’ | ‘SE’ | ‘E’ | 
‘W’), [‘&’]}; 

CAISUBID = ‘CAS’, {‘0’-‘9’}; 

From the above regular expression, we can see that in 
each CAIsub, a vehicle object is denoted by an object ID 
followed by a number and a symbol. The number is one 
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of the 27 3-D relative positions as illustrated in Figure 1. 
(‘N’ | ‘NW’ | ‘NE’ | ‘S’ | ‘SW’ | ‘SE’ | ‘E’ | ‘W’) denotes 
the moving direction of that vehicle object, where N 
stands for north, NW stands for northwest and so forth. 
The driving direction can be induced from the change of 
relative positions between sub-intervals. This direction 
information is kept here for easily capturing the trajectory 
of a vehicle which is frequently queried in transportation 
video database. 
3. is the special input symbol alphabet. = {&&, ||, ~, 
*, , }. The meaning of these special symbols is shown 

in Table 2. These symbols are used in querying the 
transportation video database. 

Table 2. Special Input Symbols 
Symbol Meaning 

&& Logical And 
|| Logical Or 
~ Logical Not 
* Wildcard 

Arithmetic operators such as ‘+’, ‘-’… 

Condition operators such as ‘<’, ‘>’, ‘= =’, ‘!=’… 

4. Qm is the set of nodes (states) in the main network. 
Each node in Qm is defined as a 4-tuple (NID, FID, OIDin,

OIDout). NID is the node ID. FID is the frame ID. This 
frame is the starting frame of the next CAI that is on the 
outgoing arc of this node (state). OIDin is the list of IDs of 
the vehicle objects that newly appear in the next CAI.
OIDout is the list of IDs of the vehicle objects that 
disappear in the next CAI. However, these two lists cannot 
be both empty. If both of them are empty, there is no new 
CAI generated. 

5. Qs corresponds to a sub-network. It is defined as a 2-
tuple (NIDsub, FID). NIDsub is the ID of a node in the 
subnetwork. Each node is associated with a FID which is 
a frame ID. This frame is the starting frame of the next 
CAIsub that is on the outgoing arc of this node (state). 

6.  is a set of the transition functions from one node 
(state) to another. In the proposed model, two nodes are 
connected by an arc that is denoted by a transportation 
video stream. : mm QCAIQ  or ssubs QCAIQ .

7. F  is the set of final states, where sm QQF .

8. S  is the set of starting states, where sm QQS .

3.4   Modeling spatio-temporal relations in 

transportation video database with TVDM 

In this section, the above-defined TVDM is applied to 
model a transportation video database. Details will be 
explained in an example shown in a TVDM diagram 
(Figure 3). 

In the diagram, circles are nodes/states of the network. 
For simplicity, only the node ID is shown in the figure. 
However, the identification of a node is also dependent on 
the traffic light phase and the video segment it is in. The 
network flow can be easily traced by following the arcs 
(arrows) in the diagram. The solid arcs are the flow in the 
main network while the dotted ones are in the sub-
network. Each arc can be distinguished by the unique 
traffic media stream on it. Again for simplicity, the full 
name of each vehicle object in the video streams 
(CAI/CAIsub) is not given in the figure. Instead, characters 
such as ‘A’ and ‘B’ are used as the symbols to represent 
the vehicle objects. 

Figure 3. TVDM diagram 

In this example, a traffic video clip shot at a major 
intersection is modeled. A video frame is divided into 
nine 2-D sub-regions. The entire traffic video clip is 
divided into phases according to the change of traffic 
lights. Each phase can be modeled with a network as 
shown in Figure 3. By connecting each such network with 
an arc, the network of the entire traffic video clip can be 

set up. There are two key frames shown in this figure. 
FID2, FID3 are the IDs of the two frames which are the 
turning points of two consecutive CAIs. Starting from the 
node NID3, two new vehicle objects (E and F) move into 
the scene, signifying the end of the previous CAI and the 
beginning of the next CAI. The video stream between 
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NID2 and NID3 is denoted as ‘A&B&C&D’, meaning the 
concurrent appearance of vehicle objects A, B, C and D. 

In the sub-network originating from NID2 and ending 
at NID3, the corresponding traffic video stream 
(A&B&C&D) is further modeled by the vehicle objects’ 
relative positions and driving directions. Each such sub-
stream is called a CAIsub in which the relative positions of 
all vehicle objects remain unchanged. For example, the 
first arc of this subnetwork carries the sub-stream 
(A10E&B10E&C7E&D16E) in which vehicle A is in 
position 10 heading east; vehicle B is in position 10 
heading east; vehicle C is in position 7 heading east; 
vehicle D is in position 16 also heading east. The arc 
originating from NIDsub2 is the sub-stream in which 
vehicle A is still in position 10 but heading northeast; 
vehicle B is still in position 10 heading east; vehicle C has 
moved to position 25 and is still heading east; vehicle D 
has moved to position 7 heading east. In this traffic light 
phase, we can tell that vehicles are either driving 
west/east or northeast i.e. left turn. By storing this 
information in the meta-data of each traffic light phase, 
the vehicles driving toward illegal directions can be easily 
detected.

In the following sections, we will discuss the 
transportation video database queries with the proposed 
model and explore some typical scenarios that may be of 
users’ interest in querying the transportation video 
database. 

4.   Transportatino video database queries 

4.1   Multimedia Input String 

As introduced in Section 3.1, the inputs of MATN models 
are Multimedia Input Strings (MIS) together with 
condition/action tables. An MIS is to simulate the input of 
an ATN, which is a natural language sentence. In MATN, 
there are two types of basic inputs. One is 
“Control_Command”. It represents a control message that 
may occur during the multimedia presentation. A 
“Control_Command” is composed of conditions and 
actions. For example, a “Control_Command” can be “if 
the bandwidth < , display the compressed version of the 
specified media stream”. “Bandwidth < ” is the condition 
and “display the compressed version of the specified 
media stream” is the action. However, since multimedia 
presentation is not the focus of this paper, we concentrate 
on the other type of multimedia input strings which is 
“Media_Stream”. In this paper, we designed our own 
input strings by following the basic idea of MATN’s 
“Media_Stream”. It has been used in Section 3 to define 
the traffic video stream in a CAI or CAIsub.

Query strings are constructed based on 
Media_Streams. Query strings are used as the query input 
of the proposed model for querying the transportation 
video database. They include some special input symbols 
which have special meanings. The list of such symbols is 
in Table 2. For example, the symbol ‘||’ means one of the 
conditions on the two sides has to be satisfied. 

“CAI.(A&B)||CAI.(A&C)” is the query string used to find 
CAIs containing “A&B” or “A&C”. 
“CAIsub.(A*N&B*S)” means moving vehicles A and B 
are in the same CAIsub with A driving northward and B 
driving southward. “*” is the wild card symbol meaning 
that A and B can be in any relative positions. It is obvious 
that the first query string can easily find its matches (or no 
match) in the main network. The answer to the second 
query string can only be found in sub-networks of the 
model. However, the search shall start from the main 
network to find all video streams containing “A&B” and 
delve into the sub-network thereafter. 

4.2   Object oriented transportation video database 

management and sample queries 

In [7], a spatio-temporal model is proposed and integrated 
into ODBMS. Since our model also targets on modeling 
traffic video objects, we argue that ODBMS is suitable for 
transportation video databases. 

In the proposed model, there are 6 classes of objects. 
The class names and properties are illustrated in Table 3, 
which is a generalization of the definitions introduced in 
Section 3. The first three classes are defined in 
Definitions 1, 2, and 3. The NODE class is defined in the 
formal definition of TVDM. For CAI/CAIsub class, there 
are four important properties i.e. the starting node (NIDs)
and the ending node (NIDe) in the main network, the 
starting nodes (NID/NIDsub) in the main/sub network, and 
the traffic video streams in main/sub network as defined 
in Section 3.3. The FRAME class contains the actual 
video frames in the definition of nodes of the network. Its 
properties include FID (frame ID), the Video Clip it is in 
i.e. CID and the actual frame in the form of an image file. 
A VO object corresponds to a distinct vehicle object. For 
example, if there is a vehicle object A, A.OID is its ID. 
Note that the MBR property in VO class is actually a list 
<mbrf1, mbrf2, …, mbrfn> denoting the MBR property of a 
VO across the frames f1, f2, …, fn.

Table 3. Objects and Properties 
Class Properties 

VO OID  MBR  VSF 
TLP PID, PSF, PEF, META 
TVC CID, META 

NODE NID, OIDin, OIDout, FID 
CAI/CAIsub NIDs, NIDe, NID/NIDsub, Media_Stream 

FRAME FID, CID, Frame 

4.3  Sample queries 

In order to test the effectiveness of the proposed spatio-
temporal model, some typical transportation video 
database queries are studied in this section. In 
transportation video database, the user is often more 
interested in retrieving video data through queries on 
vehicle objects’ properties and spatio-temporal relations 
among them. 
Query Example 1. Given one vehicle, find all the 

vehicles north to it.

This is a simple query in which only the information of 
spatial relations between vehicles is needed. Suppose this 
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vehicle A is in position 1 and the target vehicle is B. The 
user can issue this query using a high-level language 
which will then be translated into a Media_Stream 
together with some arithmetic and logic operations: 

CAIsub.(A1*&B4*)|| 

(CAIsub.(A1*&B1*)&&

(B.mbr(CAIsub.NIDsub.FID).y < A.mbr(CAIsub.NIDsub.FID).y)) 

The meaning of the above expression is that in some 
CAIsub, vehicle object A is in position 1 and B is in 
position 4 OR both A and B are in position 1 with the y-
coordinate of B’s centroid less than that of A’s. It does 
not matter in what directions the two vehicles are moving. 
In either of these two situations, B is considered north to 
A. In the CAI model [2], the spatial positions between 
each pair of vehicle objects are recorded explicitly in the 
database. Therefore, for Query Example 1, there would be 
no need to compute the relation between B.mbr.y and 
A.mbr.y. Our model did not adopt this approach. In both 
the CAI model and our model, each vehicle object’s 
coordinates (bounding box and centroid) are already 
stored in MBR. Therefore, it is easy to compute the 
relative spatial relation between two vehicle objects. 
However, our model chooses to store the spatial relation 
between pairs of vehicle objects at a coarser granularity. 
That is, for each vehicle object, only its relative position 
to the reference position is stored. If two vehicle objects 
happen to fall into the same position relative to the 
reference position, their spatial relation is examined on 
the run to avoid storing too much information in the 
database. This can reduce the redundancy in 
transportation surveillance video database, since the 
queries on spatial relations of vehicles are not as often as 
on vehicles’ moving trajectories. 
Query Example 2. Two vehicles are meeting each 

other with one from northwest and another from 

south east. 
CAIsub.(A*NW&B*SE) &&

(Dist(A.mbr(CAIsub.NIDsub.FID).high, B.mbr(CAIsub.NIDsub.FID).low)< 

Dist(A.mbr(CAIsub.NIDsub.FID).low, B.mbr(CAIsub.NIDsub.FID).high))

Dist(C1, C2) is the subroutine to calculate the distance 
between two points whose coordinates are C1 and C2.
A.mbr.high is the coordinates of the upper left corner of 
A’s MBR and A.mbr.low is the coordinates of the bottom 
right corner. The meanings of B.mbr.low, A.mbr.low and 
B.mbr.high are similar. 

Query Example 3. Find vehicles that are speeding. 

(A.OID  Node1.OIDin)&&(Node2.OIDout  A.OID) && 

(dist(A.mbr(Node1.FID).centroid, A.mbr(Node2.FID).centroid) / 

((Node2.FID – Node1.FID) / TVC.META.FR) > )

This query can be conducted on the main network. 
Node1 and Node2 are two nodes in the main network 
where one of the incoming vehicles in Node1 is an 
outgoing vehicle in Node2. From the frame IDs of these 
two nodes, the number of frames in between can be 
calculated, which is divided by the frame rate 
(TVC.META.FR). In this way, the average velocity of the 

vehicle when passing the intersection can be calculated. If 
a vehicle’s velocity is larger than , the allowed 
maximum speed, this vehicle is considered speeding. 
“dist(A.mbr(Node1.FID).centroid, A.mbr(Node2.FID).centroid)” is 
the subroutine that computes the travel distance of the 
vehicle in passing this intersection. “FR” in 
TVC.META.FR” means the frame rate (frs/sec) which is 
stored in the meta-data of that video clip. 
Query Example 4. Find vehicles that take a U-turn. 

((CAIsub1.(A*S)&&CAIsub2.(A*N))|| 

(CAIsub1.(A*N)&&CAIsub2.(A*S))|| 

(CAIsub1.(A*E)&&CAIsub2.(A*W))||  

(CAIsub1.(A*W)&& CAIsub2.(A*E))|| 

(CAIsub1.(A*NW)&& CAIsub2.(A*SE))|| 

(CAIsub1.(A*SE)&& CAIsub2.(A*NW))|| 

(CAIsub1.(A*NE)&& CAIsub2.(A*SW))|| 

(CAIsub1.(A*NE)&& CAIsub2.(A*SW))) && 

((CAIsub2.NIDsub.FID – CAIsub1.NIDsub.FID)/ TVC.META.FR < )

In this query, the sub-networks are searched for any 
vehicle that drives toward opposite directions within 
reasonable time duration  when passing the intersection.  

Query Example 5. Find vehicles that drive toward 

illegal direction in the traffic light phase when only 

north-bound and south-bound vehicles are allowed. 

~(CAIsub.(A*S)||CAIsub.(A*N)) 

The south-bound and the north-bound allowed directions 
are information extracted from the meta-data of that 
traffic light phase. According to this information, we can 
detect vehicles driving at wrong directions by using 
similar queries as the above. 

Query Example 6. Find vehicles that stop at some 

time.
CAI.(A*)&&

(dist(A.mbr (CAI.NIDs.FID).centroid, A.mbr (CAI.NIDe.FID).centroid) 

/

((CAI.NIDs.FID –CAI.NIDe.FID) / TVC.META.FR) == 0)

A vehicle’s velocity when passing the intersection 
cannot be zero. Otherwise, it is considered to have 
stopped. This can be used in identifying accidents or 
traffic jams. If one or more vehicles stay still for a long 
consecutive sequence of CAIs, there might be an accident 
or jam occurring in the intersection. 

Query Example 7. Given a vehicle A that is driving 

eastward, find a vehicle B that overtakes A. 

(CAIsub1.(A*E&B*E)&&

(B.mbr(CAIsub1.NIDsub.FID).x<A.mbr(CAIsub1.NIDsub.FID).x)&&

(B.mbr(CAIsub1.NIDsub.FID).y A.mbr (CAIsub1.NIDsub.FID).y))&& 

(CAIsub2.(A*E&B*E)&&

(B.mbr(CAIsub2.NIDsub.FID).x>A.mbr(CAIsub2.NIDsub.FID).x)&&

(B.mbr(CAIsub2.NIDsub.FID).y A.mbr (CAIsub2.NIDsub.FID).y)) 

The condition of an overtaking is that both vehicles are 
driving in the same direction with one behind another. 
The one behind overtakes the other by using an empty 
lane next to the lane both vehicles are on. Therefore, 
initially the x-coordinate of A (the leading vehicle) is 
larger than that of B’s. After overtaking, A’s x-coordinate 
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is smaller than that of B’s. As the whole process may not 
finish within one CAIsub, CAIsub1, and CAIsub2 do not have 
to be two consecutive intervals (the same applies to all the 
previous queries.) However, we do need to find out the 
closest pair of CAIsub2 and CAIsub1, since any CAIsub

after/before CAIsub2/CAIsub1 with A and B in it may also 
satisfy the above conditions. 

5.   Advantages 
The goal of this paper is not to design a master-of-all 
spatiotemporal database model, which is often not 
feasible. Instead, the proposed model in this paper is 
domain-specific. That is, it focuses on modeling the 
transportation surveillance video database. Targeting at 
the specific characteristics of transportation video, the 
proposed model can extract, index, and store the key 
information in the video. With these information stored in 
the database, transportation video data can be efficiently 
accessed and queried. This is one of the major advantages 
of our model. 

The proposed model combines the strength of two 
general purpose spatio-temporal database models – 
MATN and CAI. We follow MATN’s basic structure as 
well as its way of modeling spatial relations among 
objects. The key concept in L. Chen’s model – CAI is also 
adopted in our model. This provides a way in partitioning 
transportation videos into “meaningful” segments and 
extracting the spatio-temporal information out of that. By 
combining the advantages of the two general-purpose 
models, our proposed model can better meet the needs of 
a transportation surveillance video database. 

More specifically, motivated by this specific 
application, the proposed model only stores information 
that is frequently queried. Therefore, unlike CAI model, 
the proposed model does not record spatial relations 
between each pair of moving objects as this is not the 
frequent query type in the transportation video database. 
Furthermore, this will introduce redundancy into the 
database. The proposed model only records the relative 
spatial-relation of moving objects at a coarse granularity 
based on MATN model. The direction information of a 
moving vehicle is also recorded since this is a big concern 
of the user’s queries. For example, the illegal driving 
direction and U-turn can be easily detected in our model, 
while it is not that easy in either the MATN or the CAI 
model. In order to further extract useful information from 
the video, CAIs are further divided into sub-intervals in 
which all moving vehicles’ relative positions remain 
unchanged. We call this sub-interval CAIsub. This sub-
division enables us to model the video streams at a finer 
granularity instead of simply using CAIs. 

6.   Conclusion 
This paper proposed a spatio-temporal multimedia 
database model for transportation surveillance video. The 
formal definition of the model provides the basis for 
constructing a transportation surveillance video database, 

which is a key in building an Intelligent Transportation 
System. The proposed model combines the strength of 
two general-purpose spatio-temporal models –MATN and 
CAI. The proposed model is also adjusted to suit the 
specific needs of this specific application. To avoid 
redundancy, only the frequently queried information is 
stored in the database. Thus the extraction of key 
information from the transportation video is performed in 
a way to facilitate queries in this specific domain. With 
this model design, data indexing and database queries can 
be performed more efficiently. 
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