
On Construction of Holistic Synopses

under the Duplicate Semantics of Streaming Queries

David Toman

D. R. Cheriton School of Computer Science
University of Waterloo, Canada

david@uwaterloo.ca

Abstract

Transaction-time temporal databases and
query languages provide a solid framework
for analyzing the properties of queries over
data streams. In this paper we focus on
issues connected with the construction of
space-bounded synopses that enable answer-
ing of continuous queries over unbounded
data streams. We link the problem to the
problem of query-driven data expiration in
append-only temporal databases and study
space bounds on synopses that are sufficient
and necessary for query answering under du-
plicate semantics.

1 Introduction

A considerable effort to understand many aspects
of query processing over streaming data—data that
is arriving in fragments over time—has been the
topic of research in the last several years, see e.g.,
[2, 3, 4, 8, 9, 10, 12, 13], and many others. These
efforts have mainly focused on efficient processing of
continuous queries—queries evaluated continuously as
more data is arriving on the stream—over unbounded
data streams. A key component of such solutions is the
construction of synopses—data summaries that allow
execution of continuous queries without the need to
buffer or otherwise store the whole history of the data
stream.

The goal of this paper is to show that certain re-
quirements, often rather desirable in such systems—
such as the use of SQL-style duplicate semantics while
maintaining reasonable bounds on the size of the sum-
mary data—are not possible to achieve. The paper

Proceedings of the third Workshop on STDBM

Seoul, Korea, September 11, 2006

then shows how acceptable results can be achieved by
carefully limiting the expressive power of streaming
query languages in which continuous queries are for-
mulated.

As we desire to derive bounds as strong as possi-
ble, we adopt a holistic approach to the construction
of synopses for continuous queries. Unlike other ap-
proaches that construct synopses on a per-physical-
operator basis (e.g., for the so called symmetric joins,
etc., [2]), we develop techniques that tailor the synop-
sis to the complete continuous query—hence the use
of the term holistic synopsis.

Many of the techniques presented in this paper can be
traced to approaches designed to allow efficient data
expiration in transaction-time temporal databases
[15]. The novel contributions of this paper are mainly
concerned with the use of duplicate semantics for
queries and can be summarized as follows:

1. We show that adopting an SQL-style duplicate
semantics for SQL-like streaming queries makes
construction of bounded synopses impossible; in
the general case, the synopses may have to grow
at least linearly with the stream length.

2. We show that for certain limited languages, this
growth can be tamed to a logarithmic factor; that
factor, however, cannot be avoided.

Note that the negative results presented in this pa-
per are based on information-theoretic properties of
queries and thus cannot be improved upon by more
sophisticated algorithms without resorting to approx-
imations. We also contrast these results with simi-
lar results obtained for the set semantics of the same
languages where constant bounds in the length of the
stream can be obtained. In addition to the technical
results, the paper provides a strong parallel between

GENESIS
텍스트 상자
41

techniques developed for transaction-time temporal
databases [7], data expiration [15], and approaches to
efficient evaluation of streaming queries.

The rest of the paper is organized as follows: Sec-
tion 2 provides the basic definitions and shows the links
between streaming queries and temporal databases.
Section 3 shows that in general, duplicate semantics
leads at least to a logarithmic lower bound on the size
of the synopses, measured in the length of the data
stream; it also identifies cases in which allowing dupli-
cates in the data model leads to linear lower bounds on
the size of the synopses needed to answer a continuous
query. Section 4 shows fragments of query languages
for which a logarithmic bound can be achieved. We
conclude with identifying open issues in the area in
Section 5.

2 Background

We first review the relevant definitions in the area of
transaction-time temporal databases and link them to
querying data streams. The presentation in this sec-
tion is based on a chapter on data expiration [15] with
terminology suitably modified to data streams.

2.1 Temporal Queries for Data Streams

We first formalize the notion of data stream as follows.

Definition 2.1 (Data Stream/History) Let σ be
a relational schema. A data stream is a sequence

S = 〈S0, S1, . . . , St, . . .〉

where each St is a multiset of tuples conforming to σ
that have arrived in S at time t. We call the multisets
St states of S at t. We assume discrete integer-like
time with time instants drawn from a linearly ordered
set and allow multiple tuples to arrive at the same time
instant. The data values forming the tuples belong to
the domain of uninterpreted constants; the data do-
main is equipped with equality only. At any particular
finite time t, we have access only to a finite prefix of
S of the form

S(t) = 〈S0, S1, . . . , St〉

We use T(t) and D(t) to denote the active temporal
and data domains of a stream (prefix), respectively.
Note that the active domains change with time as new
data arrives on the stream. The active temporal do-
main T(t) is, in our setting, just the set {0, . . . , t}; the
definition, however, allows to use timestamps from any
linearly ordered set.

Without loss of generality, we present our results for a
single data stream. However, the results immediately

extend to multiple streams, e.g., by coding multiple
streams by values of a distinguished attribute. This
formalization shows that data stream is just a vari-
ant name for an append-only temporal database (often
called a transaction-time temporal database). This ob-
servation allows us to use off-the shelf temporal query
languages to query data streams. In this paper we
use two-sorted first-order logic (2-FOL) to query such
streams:

Definition 2.2 (Streaming/Temporal Queries)
Let S be a data stream. The syntax of first-order
streaming queries over S is given by the following
grammar.

Q ::= S(t, x1, . . . , xk)
| xi = xj | ti < tj | ti = tj | ti > tj

| Q ∧Q | ∃xi.Q | ∃ti.Q | εQ
| Q ∨Q | Q ∧ ¬Q

The εQ subformula stands for duplicate elimination.
In addition, we assume that the queries are range re-
stricted ; this is enforced by requiring the usual restric-
tions on the occurrences of equalities and inequalities
and the variable-compatibility conditions for disjunc-
tions (∨) and negations (∧¬). The semantics of the
queries is defined using the usual Tarskian-style sat-
isfaction relation extended to account for duplication;
we write

S(t), θ, n |= Q

to stand for “the substitution/tuple θ is an answer to Q
with n duplicates, when evaluated over S(t), a prefix of
S”. The full semantics of the above language is given
in Figure 1. In particular, the semantics specifies how
duplicates are handled in queries1. An answer to a
query at time t is the multiset

SQ
t := {θ, . . . , θ︸ ︷︷ ︸

n

| S(t), θ, n |= Q}.

Note that the value n must be unique for a given tuple
θ, i.e., θ(x) functionally determines n. To simplify the
definition, we assume that substitutions not present in
an answer have 0 duplicates.

Again, the query language in Definition 2.2 is just a
temporal query language when the stream is regarded
as finite prefix of a database history. Note also, that

1We utilize a SQL-style definition of duplicates, i.e., a prod-
uct for conjunctions, sum for disjunction (union) and existential
quantification (projection), and difference for range-restricted
negation (set difference).

GENESIS
텍스트 상자
42

S(t), θ, n |= S(t, x1, . . . , xk) if 〈θ(x1), . . . , θ(xk)〉 ∈ Sθ(t) duplicated n times
S(t), θ, 1 |= xi = xj if θ(xi) = θ(xj)
S(t), θ, 1 |= ti < tj if θ(ti) < θ(tj)

S(t), θ1 ◦ θ2,m · n |= Q1 ∧Q2 if S(t), θ1,m |= Q1 and S(t), θ2, n |= Q2

S(t), θ,
∑

v∈D(t) nv |= ∃x.Q if S(t), θ[v/x], nv |= Q

S(t), θ,
∑

s∈T(t) ns |= ∃t.Q if S(t), θ[s/t], ns |= Q

S(t), θ, 1 |= εQ if S(t), θ, n |= Q

S(t), θ, n+m |= Q1 ∨Q2 if S(t), θ,m |= Q1 and S(t), θ, n |= Q2

S(t), θ,max(0,m− n) |= Q1 ∧ ¬Q2 if S(t), θ,m |= Q1 and S(t), θ, n |= Q2

Figure 1: SQL-style Duplicate Semantics for Streaming Queries.

the semantics is defined with respect to the finite por-
tion of the data stream; answering queries over all po-
tential extensions of a stream has been shown unde-
cidable for any reasonably powerful query language [6],
for detailed discussion of this phenomenon see [7].

Definition 2.3 (Continuous Query Answer) Let
Q be a query without free temporal variables. An
answer to a continuous query specified by Q is defined
as a stream

SQ = 〈SQ
0 , S

Q
1 , . . . , S

Q
i , . . .〉

where SQ
t is the answer to Q over the stream prefix

S(t) as defined by the semantics in Figure 1.

The restriction to queries without free temporal vari-
ables is needed to ensure that results of a query form a
proper data stream. This arrangement allows for com-
positionally, possibility of view definitions, etc. Note
also that the representation of duplicates in binary
(i.e., using counts to represent the numbers of dupli-
cates) is a more compact representation than explicitly
duplicating the tuples. Thus all lower bounds derived
in this paper also hold for the SQL-style representa-
tion in unary (i.e., by explicit replication of the tuples
in question).

2.2 Holistic Synopses and Data Expiration

For continuous queries, it is often not feasible to store
the whole data stream in computer storage. Therefore,
streaming systems use summaries called synopses to
remember the parts of the data stream that are nec-
essary to generate subsequent answers to continuous
queries.

Definition 2.4 (Holistic Synopsis) Let Q be a
query over S. A holistic synopsis for Q is a triple
(∅,∆,Γ) that satisfies the following property:

Q〈S0, . . . , St〉 = Γ(∆(St,∆(St−1,∆(. . .∆(S0, ∅))))

for any prefix 〈S0, . . . , St〉 of S. In addition, we require
that the triple (∅,∆,Γ) can be effectively constructed
from Q.

The first two components define the actual holistic
synopsis for Q as a self-maintainable materialized view
of S: the ∅ component tells us what the contents of
this view is in the beginning and the ∆ component tells
us how to update the view when more data arrives in
S. The last component, Γ now generates the answers
to Q only accessing the information in the view. Note
that the definition does not specify what data model
the view uses nor what query languages are used for
the three components of the synopsis. Note that this
definition is essentially the same as the definition of a
data expiration operator for transaction-time temporal
databases [15].

How do we compare Holistic Synopses?

Intuitively, we have replaced the complete prefix of
S with a materialized view defined by the ∅ and ∆
queries. Thus our aim is to minimize the size of the
materialized view in terms of:

1. the length of the data stream S, |T(t)|,

2. the number of distinct values in S, |D(t)|, and

3. the size of Q.

The dependency on the length of the data stream is the
most critical factor. Thus we call a synopsis bounded
if it is bounded by a constant function in the length
of the stream. We call a synopsis log-bounded if it is
bounded by a function logarithmic in |T(t)|.

For streaming query languages that use set seman-
tics, results obtained for temporal databases can be
applied:

Proposition 2.5 ([14]) A bounded holistic synopsis
exists for any two sorted first order streaming (2-FOL)
query under set semantics.

GENESIS
텍스트 상자
43

The above theorem shows that for queries under set
semantics, bounded synopses exist for rather powerful
query languages, in particular for the language intro-
duced in Definition 2.2. The rest of the paper argues
that bounded synopses do not exist when duplicate
semantics is used for the same language and that log-
bounded synopses are the best we can hope for in var-
ious fragments of the first-order language under dupli-
cate semantics.

3 Lower Bounds

Now we are ready to provide simple lower bounds that
show why the use of unrestricted duplicate semantics
for streaming queries may be expensive and, in cer-
tain cases, not feasible at all. An Ω(log |T(t)|) lower
bound has been observed for queries with the counting
aggregate [14]. Similar query, e.g.,

(∃t.S(t, a)) ∧ ¬(∃t.S(t, b)),

that expresses the fact that there were more a’s than
b’s in the stream S, for a and b distinct constants,
yields such bound for queries with duplicates. It is easy
to see using the pigeon-hole principle that a synopsis
for this query needs Θ(log |T(t)|) bits.

However, it turns out that log-bounded synopses
are not sufficient for first-order queries with duplicate
semantics.

Theorem 3.1 There is a first-order query for which
any synopsis is bounded from below by Ω(|T(t)|).

Proof (sketch): Consider the query

ε∃t1, t2.t1 < t2 ∧¬((∃x.S(t1, x)) ∧ ¬(∃x.S(t2, x)))
∧¬((∃x.S(t2, x)) ∧ ¬(∃x.S(t1, x)))

The query expresses the condition two states of S con-
tain the same number of tuples. Now consider a prefix
of a data stream S(t) such that Si contains the value
a duplicated mi times, mi 6= mj for 0 ≤ i 6= j ≤ t. To
be able to answer the above query when the stream is
extended by the state Sn+1 we need at least a set of
values {m0, . . . ,mt}. To represent this set we need at
least

t∑
i=0

log(mi) ≥ t · log(min{m0, . . . ,mt}) ∈ Ω(|T(t)|)

bits.

The unfortunate consequence of this lower bound
is that, in general, the best synopsis for first-order
queries under duplicate semantics are essentially as big
as the original data stream (and thus we may be better
off just storing the stream itself).

4 Upper Bounds

We now investigate cases in which logarithmic bounds
on the size of holistic synopses can be obtained. To this
end, we need to restrict the streaming query languages.
We consider two different fragments of first-order logic:

1. positive first-order queries, and

2. temporal logic queries.

In both cases our aim is to make the proof of The-
orem 3.1 inapplicable. In the first case by disallow-
ing negation and in the second by disallowing multiple
temporal contexts to exist at the same time.

4.1 First-order Temporal Logic Queries

We start with the case of the past fragment of the first-
order temporal logic (FOTL), a logic based on implicit
access to the temporal attribute of tuples using modal
operators. This way the number of coexisting temporal
contexts is limited while still commanding a sufficient
expressive power2. The syntax of the language is de-
fined as follows:

Definition 4.1 (First-order Temporal Logic)
Let S be a data stream. The syntax of FOTL queries
over S is given by the following grammar.

Q ::= S(x1, . . . , xk) | xi = xj

| Q ∧Q | ∃xi.Q | εQ
| Q ∨Q | Q ∧ ¬Q
| Q since Q | 5Q

Note that formulas of FOTL do not use variables rang-
ing over the temporal domain; handling of this aspect
of the queries is encapsulated in the temporal operators
since and 5 (previous time). Thus the semantics is
now defined with respect to an evaluation point using
a satisfaction relation

S(t), θ, s, n |= Q

which, similarly to Definition 2.2, states that the tuple
θ is an answer to Q at time s with n duplicates in S(t).
Note that the time point smay be different from t; this
allows referring to past states of the data stream S in
queries. The semantics of FOTL mimics that of 2-FOL
introduced in Figure 1: all the standard first-order
connectives and quantifiers are evaluated per state of
S (using the so-called snapshot semantics [11]). The
only addition are the rules for handling the temporal

2It has been shown, however, that FOTL is strictly less ex-
pressive fragment of 2-FOL, the language introduced in Defini-
tion 2.2 [1, 16].

GENESIS
텍스트 상자
44

operators; here we need to extend the standard def-
initions to handle duplicates. The semantics of the
since operators (there are two variants to account for
two ways to determine the number of duplicates) is
defined as follows:

S(t), θ, s,maxs2∈T

∑
s1∈T(t)ms1 |= Q1 since1 Q2 if

S(t), θ, ns2 , s2 |= Q2 for some s2 < s, ns2 > 0 and
S(t), θ,ms1 , s1 |= Q1 for all s1 < s2 ≤ s,ms1 > 0

S(t), θ, s,
∑

s2∈T(t) ns2 |= Q1 since2 Q2 if
S(t), θ, ns2 , s2 |= Q2 for some s2 < s, ns2 > 0 and
S(t), θ,ms1 , s1 |= Q1 for all s1 < s2 ≤ s,ms1 > 0

For the previous time operator, 5Q, the duplicate se-
mantics is defined as follows:

S(t), θ, s, n |= 5Q if S(t), θ, s− 1, n |= Q and s > 0

An answer to a continuous query Q at time t is defined
as the multiset

{θ, . . . , θ︸ ︷︷ ︸
n

| S(t), θ, t, n |= Q}.

The two variants, since1 and since2, differ in the way
they handle duplicates: since1 counts the maximal
number of the answers θ satisfying Q1 since Q2 was
true; since2 counts the number of times the tuple θ
satisfies Q2 such that Q1 was true since then3.

Additional temporal connectives can be derived
from the since and 5 operators; again, the handling
of duplicates is the only concern here.

Example 4.2 The sometime in the past (3) connec-
tive can be defined as follows:

31Q=true since1 Q
32Q=true since2 Q

The two variants differ again in how duplication of
results is defined: in the first case it indicates how
far in the past was the earliest Q has been and the
second case how many times Q has been true in the
past4. Again additional connectives can be defined by
combining the above two. For example, should we wish
to know how far in the past the latest Q was we can
write (¬Q) since1 Q.

3Similar to the duplicate semantics for SQL, this is just a
particular a way of choosing how many duplicates are in an an-
swer to a particular query. The definitions above work correctly
with the rest of the technical development in this paper. A com-
prehensive study of various possibilities to define duplication of
tuples for temporal queries is beyond the scope of this paper.

4Assuming the constant true is not duplicated.

Note that one might be tempted to define the duplicate
semantics or the sometime in the past (3) operator,
e.g., as follows:

S(t), θ, t, n |= 3Q if S(t), θ, s, n |= 3Q for some s < t.

This definition would seemingly allow formulating the
query “were there two time instants with the same
number of elements in the stream?”. However, it is
important to see that such a definition is incompatible
with the definition of duplicate semantics: it allows
assigning two different duplicities to the same tuple—
this is illegal under the duplicate semantics.

Synopses for FOTL

To define a synopsis for a given FOTL formula we use
the following identities:

Lemma 4.3 Let S be a data stream and Q1 and Q2

FOTL queries. Then

S(t), θ, s, n+m |= Q1 since1 Q2 if

– S(t), θ, s− 1, n |= Q1 since1 Q2 and

– S(t), θ, s,m |= Q1.

S(t), θ, s,m |= Q1 since1 Q2

– S(t), θ, s− 1, n |= Q2,

– S(t), θ, s− 1, l 6|= Q1 since1 Q2, and

– S(t), θ, s,m |= Q1.

S(t), θ, s, n+m |= Q1 since2 Q2 if

– S(t), θ, s− 1, n |= Q1 since2 Q2,

– S(t), θ, s− 1,m |= Q2, and

– S(t), θ, s, l |= Q1.

S(t), θ, s,m |= Q1 since2 Q2 if

– S(t), θ, s− 1, n 6|= Q1 since2 Q2,

– S(t), θ, s− 1,m |= Q2, and

– S(t), θ, s, l |= Q1.

S(t), θ, s, n |= Q1 since2 Q2 if

– S(t), θ, s− 1, n |= Q1 since2 Q2,

– S(t), θ, s− 1,m 6|= Q2, and

– S(t), θ, s, l |= Q1.

Proof (sketch): Immediate from the definitions.

With the help of these identities we can modify the ap-
proach to bounded checking of past FOTL constraints
[5] as follows:

GENESIS
텍스트 상자
45

Definition 4.4 Let Q be a FOTL query and
{α1, . . . , αk} all of its temporal subformulas (i.e., for-
mulas rooted by a temporal operator). We define aux-
iliary views Rαi , one for each of the subformulas αi.
The attributes of Rαi correspond to the free variables
in αi with an additional distinguished integer-valued
attribute n that accounts for the duplication of tuples.

The auxiliary views are initialized to an empty set
each (this formally corresponds to the ∅ component
of the synopsis) and then, whenever a new state of S
arrives, the views are rematerialized using the rules
in Lemma 4.3 (the ∆ component). To evaluate the
temporal subformulas in the preconditions of the rules
we use the current and new instances of the auxiliary
views (this imposes an ordering on the execution of the
re-materializations). An answer to Q (the Γ compo-
nent) is derived by executing Q after all its temporal
subformulas have been replaced by the auxiliary views.

Theorem 4.5 Let Q be a FOTL query. Then the in-
stances of views constructed using Definition 4.4 form
a log(|T(t)|)-bounded holistic synopsis for Q.

Proof (sketch): Every time a new data state arrives
on S, it is sufficient to access only the t-th and (t−1)st
states of the auxiliary materialized views and the last
state of S. The size of the auxiliary views depends on
the size of the query (number of temporal subqueries),
the size of the active data domain |D(t)| at time t, and
log(|T(t)|) due to the necessity to keep the counters
counting the numbers of duplicates.

The above upper bound matches the lower bound from
Section 3 as the query “have there been more a values
than b values in the stream S” can be formulated in
FOTL using the formula

(32S(a)) ∧ ¬(32S(b)).

Thus the above technique is (worst-case) optimal up
to a constant factor (w.r.t. |T(t)|).

Example 4.6 The auxiliary views for the query
above are R32S(a)(n) and R32S(b)(n); note that both
the views have single integer attribute as the original
subqueries are closed formulas.

The ∆ operator is defined as

R
32S(a)
t := {n+m | S(t),m, t |= S(a),

R(t), n, t− 1 |= R32S(a)}

where the stream R is the stream generated for the
auxiliary relations. Similar definition is used for

R32S(b)(n). Note that as streams, the auxiliary re-
lations in this example are 0-ary—conceptually they
contain the true tuple duplicated an appropriate num-
ber of times; the actual binary representations there-
fore contain just one integer value each.

The Γ part is then defined as R32S(a) ∧ ¬R32S(b).

4.2 Conjunctive and Positive Queries

Queries in FOTL provide a powerful way of querying
data streams. They also generalize the so called win-
dowed queries in a natural way. However, there is a
mismatch between streaming query languages that use
SQL-like syntax (with explicit access to the time in-
stant attributes [2]) and FOTL. Indeed, [1, 16] show
that the later are strictly less expressive. Also, the
lower bound for 2-FOL in Section 3 compared to the
upper bound for FOTL in Section 4 show, that this
discrepancy cannot be repaired by adopting duplicate
semantics.

In this section we therefore look on common sublan-
guages of 2-FOL, namely on conjunctive queries (CQ)
and unions of conjunctive queries (UCQ). We show
that, in these cases the technique developed for FOTL
can be adopted to CQ and UCQ.

Definition 4.7 (Conjunctive Query) A conjunc-
tive query is an expression of the form

∃t1, . . . , tk, ȳ.S(t1, x̄1),∧ . . . ∧ S(tk, x̄k) ∧ φ ∧ ψ

where x̄i are vectors of data variables, ϕ is a conjunc-
tion of equalities over the data variables and ψ a order-
ing condition over the temporal variables. The query
can be potentially prefixed by duplicate elimination.

Note that we require the answers to CQ not to contain
any free temporal variables in order for them to serve
as continuous queries over data streams.

The construction of synopses for CQ proceeds in
two steps:

1. First a given CQ is rewritten to an equivalent
union of CQs, such that the condition ψ in each
of the constructed queries imposes a linear order
among the variables t1, . . . , tk.

2. Second, each of the above queries is translated
to FOTL and then the synopsis construction for
FOTL is used.

This approach is supported by the following two lem-
mas:

Lemma 4.8 Let Q be a CQ of the form

∃t1, . . . , tk, ȳ.S(t1, x̄1),∧ . . . ∧ S(tk, x̄k) ∧ φ ∧ ψ.

Then there is a finite set of CQ such that

GENESIS
텍스트 상자
46

• the (duplicate preserving) disjunction of these CQ
is equivalent to the original CQ and

• the subformulas ψ in these queries impose a linear
order on valuations of the variables t1, . . . , tk.

Proof (sketch): Let Ψ be the set of all formulas that
express linear orders over t1, . . . , tk consistent with ψ.
This set is finite and due to the law of excluded middle,
no two elements of Ψ can be made true by the same
valuation. Thus the set of CQ

{∃t1, . . . , tk, ȳ.S(t1, x̄1),∧ . . .∧S(tk, x̄k)∧φ∧ϕ | ϕ ∈ Ψ}

fulfills the requirements of the Lemma.

Thus, for each two variables, we have ti < tj , ti = tj ,
or ti > tj . This allows us to construct a FOTL formula
by using the32 connective to simulate the inequalities.
Hence the following Lemma:

Lemma 4.9 Let Q be a CQ of the form

∃t1, . . . , tk, ȳ.S(t1, x̄1),∧ . . . ∧ S(tk, x̄k) ∧ φ ∧ ϕ.

in which ϕ imposes a linear order on the temporal vari-
ables t1, . . . , tk. Then there is an equivalent formula
in FOTL.

Proof (sketch): We replace the CQ by a FOTL
query of the form

∃ȳ.3(S(x̄i1) ∧ . . . ∧ S(x̄il
)∧

3(S(x̄j1) ∧ . . . ∧ S(x̄jl′) ∧ . . .
3(S(x̄k1) ∧ . . . ∧ S(x̄kl′′)∧) . . .))

where the subscripts i1, . . . , il refer to those conjuncts
in the original query that are first in the linear or-
dering of temporal variables, j1, . . . , jl′to the second,
and k1, . . . , kl′′ to the last, i.e., the linear order of the
temporal variables was

ti1 = . . . = til
> tj1 = . . . = tjl′ > . . . > tk1 = . . . = tkl′′

in ϕ.

We finish the construction by applying the approach
to construction of bounded synopses introduces in Sec-
tion 4.1. The use of this approach for UCQ is imme-
diate.

5 Conclusion

In this paper we have shown that duplicate seman-
tics causes a severe difficulties in constructing bounded
synopses for processing continuous queries. Indeed,

even simple queries may require a synopsis (linearly)
proportional to the length of the original stream—
which defeats the usefulness of such synopsis. We
have also developed restricted fragments of streaming
queries that allow logarithmically-bounded synopses
to be used and shown how such synopses can be con-
structed.

5.1 Future Directions of Research

There are many directions of research to pursue in this
direction. Among these are:

Alternatives to standard duplicate semantics.
In this paper we mainly considered the standard
SQL-style approach of defining duplicate seman-
tics of queries. However, beyond compatibility
concerns, there is no principal reason why other
numerical functions, such as the “min” and
“max” functions, couldn’t be used to define the
duplicate semantic for conjunctions and dis-
junctions, respectively. The main open question
is whether a plausible duplicate semantics for
first-order queries to which Theorem 3.1 doesn’t
apply exists.

2-FOL queries with log-bounded synopses.
We have shown two sublanguages of 2-FOL
queries for which log-bounded synopses can be
constructed. However, it is not clear whether
it is possible to syntactically characterize those
2-FOL queries (possibly up to query equivalence)
for which log-bounded synopses exist.

Aggregates. Another question relates to the possi-
bility of introducing aggregate functions into the
query language—again, the best lower bounds we
know today are logarithmic in the length of the
stream. However, the techniques proposed in this
paper cannot cope with aggregates mainly as ag-
gregate functions introduce new domain elements.

Possible and certain answers. Yet another direc-
tion of research is to study fragments of query
languages for which the possible result semantics
is viable.

Also, the focus of this paper was on developing tech-
niques that allow precise answers to continuous queries
to be computed. Another direction of research is to
consider appropriate ways to approximate the answers
and trade-offs between quality of the approximations
and space needed for storing synopses. While there
has been a large amount of work in this area, sur-
veying the issues connected with approximate query
answers is beyond the scope of this paper.

GENESIS
텍스트 상자
47

References

[1] Serge Abiteboul, Laurent Herr, and Jan Van den
Bussche. Temporal Versus First-Order Logic to
Query Temporal Databases. In ACM Symposium
on Principles of Database Systems, pages 49–57,
1996.

[2] Arwind Arasu, Shivnath Babu, and Jennifer
Widom. The CQL Continuous Query Lan-
guage: Semantic Foundations and Query Execu-
tion, 2003.

[3] Ahmed Ayada and Jeffrey F. Naughton. Static
Optimization of Conjunctive Queries with Sliding
Windows Over Infinite Streams. In ACM SIG-
MOD International Conference on Management
of Data, pages 419–430, 2004.

[4] Brian Babcock, Shivnath Babu, Mayur Datar,
Rajeev Motwani, and Jennifer Widom. Models
and Issues in Data Stream Systems. In ACM Sym-
posium on Principles of Database Systems, pages
1–16, 2002.

[5] J. Chomicki. Efficient Checking of Temporal In-
tegrity Constraints Using Bounded History En-
coding. ACM Transactions on Database Systems,
20(2):149–186, June 1995.

[6] J. Chomicki and D. Niwinski. On the Feasibility of
Checking Temporal Integrity Constraints. Jour-
nal of Computer and System Sciences, 51(3):523–
535, December 1995.

[7] J. Chomicki and D. Toman. Temporal Databases.
In M. Fischer, D. Gabbay, and L. Villa, editors,
Handbook of Temporal Reasoning in Artificial In-
telligence, pages 429–467. Elsevier Foundations of
Artificial Intelligence, 2005.

[8] Lukasz Golab and M. Tamer Özsu. Processing
sliding window multi-joins in continuous queries
over data streams. In International Conference on
Very Large Data Bases (VLDB), pages 500–511,
2003.

[9] Jaewoo Kang, Jeffrey F. Naughton, and Stratis
Viglas. Evaluating Window Joins over Un-
bounded Streams. In International Conference on
Data Engineering (ICDE), pages 341–352, 2003.

[10] Flip Korn, S. Muthukrishnan, and Yunyue Zhu.
Checks and Balances: Monitoring Data Quality
Problems in Network Traffic Databases. In Inter-
national Conference on Very Large Data Bases
(VLDB), pages 536–547, 2003.

[11] Richard T. Snodgrass, I. Ahn, G. Ariav, D. Ba-
tory, J. Clifford, C. E. Dyreson, R. Elmasri,
F. Grandi, C. S. Jensen, W. Kafer, N. Kline,

K. Kulkarni, T. Y. C. Leung, N. Lorentzos, J. F.
Roddick, A. Segev, M. D. Soo, and S. A. Sri-
pada. TSQL2 Language Specification. SIGMOD
Record, 23(1):65–86, March 1994.

[12] Utkarsh Srivastava and Jennifer Widom.
Memory-Limited Execution of Windowed Stream
Joins. In International Conference on Very Large
Data Bases (VLDB), pages 324–335, 2004.

[13] Nesime Tatbul, Ugur Cetintemel, Stanley B.
Zdonik, Mitch Cherniack, and Michael Stone-
braker. Load Shedding in a Data Stream Man-
ager. In International Conference on Very Large
Data Bases (VLDB), pages 309–320, 2003.

[14] David Toman. Expiration of Historical
Databases. In International Symposium on
Temporal Representation and Reasoning, pages
128–135. IEEE Press, 2001.

[15] David Toman. Logical Data Expiration. In Jan
Chomicki, Gunter Saake, and Ron van der Mey-
den, editors, Logics for Emerging Applications of
Databases, chapter 7, pages 203–238. Springer,
2003.

[16] David Toman and Damian Niwinski. First-Order
Queries over Temporal Databases Inexpressible in
Temporal Logic. In International Conference on
Extending Database Technology, Avignon, France,
1996.

GENESIS
텍스트 상자
48

