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Abstract

 In this paper, a novel clustering algorithm is 

proposed to address the clustering problem 

within both spatial and non-spatial domains by 

employing a fusion-based approach. The motiva-

tion for this work is to overcome the limitations 

of the existing spatial clustering methods. In 

most conventional spatial clustering algorithms, 

the similarity measurement mainly takes the 

geometric attributes into consideration. However, 

in many real applications, there is a need to fuse 

the information from both the spatial and the 

non-spatial attributes. The goal of our approach 

is to create and optimize clusters, such that the 

data objects satisfy both spatial and non-spatial 

similarity constraints. The proposed algorithm 

first captures the spatial cores having the highest 

structure and then employs an iterative, heuristic 

mechanism to determine the optimal number of 

spatial cores and non-spatial clusters that exist in 

the data. Such a fusion-based framework allows 

for comparing clusters in spatial and non-spatial 

contexts. The correctness and efficiency of the 

proposed clustering algorithm is demonstrated on 

real world data sets. 

1. Introduction and Motivation for Spatial 

Clustering

Clustering is one of the prominent data mining tasks, 

which has been studied in detail[14]. Spatial data mining 

or knowledge discovery in spatial databases refers to the 

extraction, from spatial databases, of implicit knowledge, 

spatial relations, or other patterns that are not explicitly 

stored [6].  The large size and high dimensionality of spa-

tial data make the complex patterns that lurk in the data 

hard to find.  It is expected that the coming years will wit-

ness very large number of objects that are location-

enabled to varying degrees. Spatial clustering has been 

used as an important process in the areas such as geo-

graphic analysis, exploring data from sensor networks, 

traffic control, and environmental studies. Spatial data  

clustering has been identified as an important technique 

for many applications and several techniques have been 

proposed over the past decade based on density-based 

strategies, random walks, grid based strategies, and brute-

force exhaustive searching methods[8]. This paper deals 

with spatial clustering using a fusion-based approach. 

Spatial data is about instances located in a physical space. 

Spatial clustering aims to group similar objects into the 

same group considering spatial attributes of the object. 

The existing spatial clustering algorithms in literature fo-

cus exclusively either on the spatial distances or minimiz-

ing the distance of object attributes pairs. i.e., the loca-

tions are considered as another attribute or the non-spatial 

attribute distances are ignored. Much activity in spatial 

clustering focuses on clustering objects based on the loca-

tion nearness to each other[12]. Finding clusters in spatial 

data is an active research area, and the current non-spatial 

clustering algorithms are applied to spatial domain, with 

recent application and results reported on the effective-

ness and scalability of algorithms [9, 12]. One of the ear-

liest and most prominent clustering algorithms applied for 

spatial data mining are partition based approaches. Parti-

tioning algorithms are best suited to such problems where 

minimization of a distance function is required and a 

common measure used in such algorithms is the Euclidian 

distance. Recently new set of spatial clustering algorithms 

has been proposed, which represents faster method to find 

clusters with overlapping densities.  DBSCAN, 

GDBDCAN and DBRS are density-based spatial cluster-

ing algorithms, but they each perform best only on par-

ticular types of datasets[12].  However, these algorithms 

also ignore the non-spatial attribute participation and re-

quire user defined parameters.  For large-scale spatial da-

tabases, the current density based cluster algorithms can 

be found to be expensive as they require large volume of 
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memory support due to its operations over the entire data-

base. Another disadvantage is the input parameters re-

quired by these algorithms are based on experimental 

evaluations. There is a large interest in addressing the 

automation of the general purpose clustering approach 

without user intervention[13]. However, it is difficult to 

adapt these algorithms to spatial data. 

Spatial dimensions (e.g., latitude and longitude) cannot 

simply be treated as two additional non-spatial dimen-

sions because of several important reasons. Spatial data 

are generally multi-dimensional, requires the adoption of 

real-world dissimilarity measures, and are autocorrelated. 

Spatial data includes topological relationships. These dis-

tinctions put spatial and non-spatial data into different 

categories with far-reaching implications for conceptual, 

processing, and storage issues. General-purpose clustering 

methods mainly deal with non-spatial feature spaces and 

have very limited power in recognizing spatial patterns 

that involve identification of dense spatial neighborhoods.   

In section 2 we present the proposed fusion based spatial 

clustering.  The results of the application of proposed 

clustering on real-world problems are examined in section 

3. The conclusions are presented in section 4. 

2. Proposed Fusion-Based Spatial Clustering

Data fusion is a process in which the available data is 

combined to find representations of higher quality. The 

U.S. Department of Defense [2] stated that “data fusion is 

a multilevel, multifaceted process dealing with the auto-

matic detection, association, correlation, estimation, and 

combination of data and information from multiple 

sources.” More recent concepts of data fusion are dis-

cussed in [11].  Data Fusion is used in different context in 

different fields. For example in fields of sensors and im-

age analysis it is viewed as target clustering problem [4]. 

We illustrate in our proposed approach, that effective data 

fusion can be achieved through clustering and vice versa. 

The method proposed for the fusion is a two step proce-

dure comprising the following steps: (i) an initial phase 

for locating the initial spatial cores based on the spatial 

densities and (ii) an optimization phase for finding the op-

timal spatial and non-spatial fusion. In the initialization 

phase, we find the initial data tessellation, called spatial 

cores, based on spatial densities. The second phase is the 

fusion of spatial and non-spatial constraints. The goal of 

the optimization phase is to iteratively provide an intuitive 

grouping of the data objects, such that these groups satisfy 

both the spatial and non-spatial constraints. In every itera-

tion of the optimization phase, we check if the algorithm 

is improved. The algorithm is considered improved, when 

the spatial distance is minimized and the non-spatial dis-

similarity is also minimal in each spatial partition.  Next, 

we describe the details of the initialization and optimiza-

tion phases of our proposed algorithm. 

2.1 Initialization 

We apply a density-based approach to get reasonable 

neighborhood for the spatial core initialization process. 

These approaches hold that, for given radius each object 

within a cluster, the neighborhood of a give cluster must 

exceed a specified threshold. Density clustering methods 

depend on the proper selection of the neighborhood size 

and the density size. Without prior knowledge of the 

structure of the input data set, proper parameter selection 

is cumbersome.  

The initialization step of our proposed algorithm differs 

from the existing approaches mainly in the following two 

aspects.

Instead of choosing a fixed radius, we employ a heuristic 

approach to find a sequence of varying neighborhoods to 

catch the cluster structures of the input data. 

The clusters are grown in the direction of maximum 

movement of objects. Here we assume the object is at-

tracted to the strongest neighbor, which is the neighbor 

with highest densities.  

We assume the input data set X  is 

},...,,...,,{ 21 ni XXXXX , where 
iX  is an object repre-

sented as a vector of non-spatial features, and  is the to-

tal number of objects. 

n
d

idijiii XXXXX ).,,..,,( ,..21 ,

where  is the total number of non-spatial features, 

and represents the value of attribute  of object

d

ijX j
iX .

Let LLLL ,..., 21 be the set of spatial locations in the 

data space. The set of objects at location s ,  are sL

XXniiXlXlL siip
,",'1|})(),...,({ "'

. If we assume 

each location as a representation of singleton set of ob-

jects, i.e., one object per location, the object information 

at any location can be represented as )( iXl . That is, the 

cardinality of is the same as the cardinality of L X , i.e., 

n . We scan the input data set X once to find the spa-

tial densities of each object, within a neighbourhood of 

radius .  Let z be the number of spatial cores, and set it 

to a small value initially. Initially we find the area of the 

minimum bounding rectangle of the objects, and tessellate 

the data into z  cores. For each object 
iX we find the den-

sity i  of that object as the number of the other objects 

that are within a geometric neighbourhood of radius .

Initially, we assume that the objects are uniformly distrib-

uted among all initial spatial cores, and the spatial clusters 

have a uniform neighborhood area. This initial assump-

tion makes the algorithm independent of the input order of 

the data, and provides a better approach, than partitioning 

the data using random seeds. Note that in later stages of 

our algorithm, the number of cores varies based on the op-

timization stage. At this stage, since we are finding dense 
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partitions based only on spatial dimensions, a Minimum 

Bounding Rectangle, MBR provides a good approxima-

tion for the total area of the objects. 

Minimum Bounding Rectangles: The initial tessellation 

of data is based on Minimum Bounding Rectangles. 

MBRs have been used extensively to approximate objects 

in spatial data structures and spatial reasoning, because 

they need only two objects for their representation; in par-

ticular, for a set of objects , where ,  is rep-

resented as an ordered pair . Such approxi-

mations naturally extended to finding topological 

relations[7].   correspond to the lower left, 

and the upper right object of the MBR that covers all ob-

jects

'X XX ' 'X

'

2

'

1 , XlXl

'

2

'

1 , XlXl

'X .  and are called the edge objects.'

1 Xl '

2 Xl

Definition 1. Given a set of objects , let 'X
'Xl =

 and l = be the in-

tervals of , created by projecting all the objects on 
spatial dimensions  and , respectively. The MBR of the 

set of objects X’ is defined as the domain 

 , where =

'

2

'

1 , XlXl 'X '

2

'

1 , XlXl

'X

''

2

'

1 ;, XXlXl '

1 Xl '

1

'

1 , XlXl , and  

 = , and  l'

2 Xl '

2

'

2 , XlXl 1 ( 'X ) <=  <= l2

( 'X )   l1 ( 'X ) <=  <= l2 ( 'X ). 

Initial Tessellation of Data Space: We define dense re-

gion as a set of data objects, clustered using only spatial 

information. The density cluster as defined by Ester et. al 

in[3], requires both surrounding radius of an object ,

within which at least  neighboring objects should be 

found. The main differences between our proposed spatial 

core approach and the current density clustering ap-

proaches are: 1) Our proposed algorithm heuristically cal-

culates the radius , and, 2) the dense regions are evolved 

only in the direction in which the objects naturally grow.  

We propose a heuristic approach to compute . Assume 

that objects are uniformly distributed in the clusters are 

equally separated in the MBR. Then assuming the clusters 

are circular,  = f(MBR,z) = )()1( XAz  where 

'XA is the area of the MBR .  By em-

ploying such a heuristic approach, we can find clusters 

where the data points are not densely packed and hence 

might have a low 

''

2

'

1 ;, XXlXl

.

Since the number of spatial clusters evolve as the algo-

rithm evolves, and the shapes of the clusters change, these 

assumptions are good to estimate the initial cores. The 

densities of all the objects within radius  are calculated 

and sorted. Let iX be the object  with the maximum den-

sity. We assign all the objects within radius of to one 

spatial cluster. For the other 1z  clusters we grow the 

cluster in the direction of its movement. This allows for 

outlier detection and identifying a dense region that is sur-

rounded by another uniformly distributed sparse region.  

Any objects belonging to , and not part of initial dense 

regions are considered as unclassified objects. In the op-

timization stage detailed in next section, the objects in the 

above initial cores and unclassified objects are optimized 

to arrive at the clusters satisfying both the spatial and non-

spatial constraints.  

'X

2.2 Optimization 

The optimization stage aims at dynamically combining 

the best features of both spatial and non-spatial distances 

in the manner of alternating, fusing spatial and non-spatial 

clusters, and arriving at heuristically computed number of 

spatial cores and non-spatial clusters. We introduce some 

more notations and definitions to explain the concepts of 

cores and -clusters. In previous section we mentioned 

that each data object iX is a vector of d non-spatial fea-

tures. We define -clusters are clusters satisfying non-

spatial optimization criterion, and core as a representation 

of a set of objects which satisfy the spatial constraints. 

i.e., all objects in a core are geometrically proximate.  

Definition 2. A - cluster  is a set of objects which 

are homogenous only in non-spatial dimensions and are 

well-separated from the other -clusters only in non-
spatial dimensions. 

fC

The non-spatial distances are dependent on the application 

domain and types of features. Assuming jiijns XXd ,   is 

the non-spatial distance function, and  is the non-

spatial optimization function, the objective function 

for - clusters is to minimize 

nsOpt

fjij

k

f

n

i

d

j
nsns ZXdKXOpt ,),(

1 1 1

,

where X  represents the object matrix, K is the cluster 

membership matrix, and k  is the number of -clusters.  

The following statements hold when we refer to two kinds 

of centers, gravity and centroid as defined in definition 4.  

The geometrical centers of the spatial cores or -clusters 

will be referred to as the gravity. The centers based on 

non-spatial features, of spatial cores or -clusters, will be 

referred to as centroid.  is the centroid of the -

cluster , and is the centroid value of non-spatial fea-

fZ

f fjZ
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ture  for -cluster . The centroid is the average 

of the non-spatial characteristics. 

j f fZ

Definition 3. A core  is a combination of - clusters. 

Two distinct cores can have the - clusters that are non-

spatially similar.  Each - cluster of a core indicates the 

objects in a core that are non-spatially homogenous and 

well-separated from the other - clusters in the core. 

represents a - cluster in core .

rC

r

fC rC

The following criterion holds for cores and - clusters. 

1. kfzrC
r

f ...1;...1,

2. kzC
z

r

k

f

r

f1 1

3. rrzrrCC rr ,,1,

4. ffkffCC
r

f

r

f ,,1,

5. kC
z

r

r

f1

Let object iX  belonging to core be represented as 

, and object 

rC

r

iX iX  belonging to -cluster be repre-

sented as .

r

fC

rf

iX

Definition 4. The gravity rZ  for core (rC or for -

cluster ) ,   is  defined as the geometrical center for 

the set of objects in the core (or -clusters) . It is com-

puted as the mean of the locations of all objects in the 
core.

r

fZ

r

fC

r

p

i

r

i
r

p

Xl

Z 1

)(

 , 

where is the number of objects in  . rp rC

The objective function for core rC  is to minimize the 

spatial distances among the -clusters belonging to that 

core. Depending on spatial dimensions, any spatial dis-

tance metric, for example rectilinear distance function[1] 

for two dimensional spatial features can be  used to find 

the spatial proximity. Assuming  is the spa-

tial distance function, and  is the spatial optimiza-

tion function, the objective function for core  is to 

minimize  

iisp XXd ,

spOpt

rC

r fq

f

p

i

r

f

rf

ins

r

fsp ZXdCOpt
1 1

,)(  , 

where is the number of -clusters in a core and 

is the number of objects in -cluster .

rq rC

fp
r

fC

The intuition of the fusion approach is to use the informa-

tion derived from spatial proximity distance to merge-split 

the non-spatial clusters and vice-versa. We define the dis-

tance function for the fusion based approach as  

,)),(),(( 2/1

11
aa

tt
ff

k

sp

z
rr

nsfusion ZZdZZdd

where };..1{, ttztt and };..1{, aazaa . After, the 

initial clusters have been created, the optimization phase 

of the algorithm iteratively tries to improve the object dis-

tribution among the cores and the non-spatial distribution 

of the -clusters. i.e., ).min()( fusionfusion dXOpt

The pseudo code of clustering based on co-learning and 

fusion of spatial and non-spatial algorithm is depicted as 

shown in Fig. 1. In the beginning of the optimization 

phase, we consider each dense region formed in the ini-

tialization phase as a core. A representative non-spatial 

-cluster is found for each core. All the objects belong-

ing to a representative cluster should satisfy the following 

criteria.

}|...1:{)( fi

r

iri

r

f CXCXpiXCrep ,

where       

ffkffZXdZXdiffCX

rrzrrZXdZXdiffCX

fr

ins

fr

insfi

r

isp

r

isp

r

i

;,1;,,

;,1;,,

',

i.e., find the objects that have the non-spatial characteris-

tics similar to the centroid of the current core. In the itera-

tive phase of the optimization algorithm, new cores and 

-clusters are formed based on defined merge-split rules.  

Each object iX  is categorized as follows:  C-Similar, -

similar, and joint. C-Similar implies that the object is spa-

tially proximate to the same core but not to any of the ex-

isting -clusters, i.e., it is non-spatially similar to the ob-

ject closest to the gravity of the unclassified objects. -

similar implies that the object is similar to a -cluster but 

not geometrically proximate to existing cores, i.e., it is 

geometrically proximate to the object closest to the cen-

troid of unclassified objects. An object is considered joint

if and only if  it is similar to  an existing  -cluster of a 

core.  All the unclassified objects after each iteration, 

which satisfy the joint criteria, are merged with the exist-

ing -cluster of a core. All the objects of a core which 

are C-similar, are considered as tentative -clusters of 

the core that they are geometrically proximate. Similarly 

all objects, which are -similar, form new tentative 

cores.  Based on the MBRs, if the tentative cores are non-

overlapping they are considered singleton cores, and are 

merged with a core whose gravity is closer than the grav-

ity of the unclassified objects. If not singleton, and the 

MBRs are overlapping, a new core is formed. After each 

iteration of the optimization phase, we compute the new 

fusion distance, and if the rate of decrease dfusion is greater 
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than the percentage of unclassified objects, we terminate 

the algorithm. 

The algorithm is guaranteed to converge, because the dfu-

sion ensures that the points are geometrically proximate to 

only one core, and non-spatially proximate to only one -

cluster of a core, at any given time. An added benefit of 

the above fusion based clustering process is that the cores 

can be explored to retrieve region specific -clusters. 

Further we can compare two cores, by comparing the -

clusters of any two given cores. 

Algorithm Optimize 
Input :   Initial cores of objects 
Output: Spatial Cores and -clusters in each core 
Step 1:  
  Initial z dense regions; 
  Find the gravities and centroids of each core; 
Step 2: 
  df_prev = dfusion;
  Find the rep -clusters, ,  of each core; )( r

fCrep
  Compute C-similar, -similar, and  joint; 
Step 3: 
  For all unclassified objects { 
    Add the joint objects to existing  -cluster of a core; 
    In each core, create -clusters  with all objects c- similar; 
    Create tentative cores with all objects -similar; 
}
Step 4:  
  if non-overlapping singleton  cores {  
    merge  with  an existing core;} 
 compute dfusion;    
Step 5:   
  Find representative - clusters )( r

fCrep
  Objects that do not belong to core or -cluster
       considered unclassified; 
  if  [(df_prev -dfusion)/ df_prev -dfusion]> [ unclassified / n)] 
   go to step 2 
 else exit; 

  } 

Figure 1. Algorithm Optimize 

3. Experimental Evaluation and Results 

Comprehensive experiments were conducted to assess the  

accuracy and efficiency of the proposed approach. By 

comparing to existing algorithms, such as purely spatial 

clustering (GraviClust[5]), Non-Spatial(k-means), and 

spatial clustering algorithm with partial capability to sup-

port non-spatial attributes(GDBSCAN),  we demonstrate 

accuracy of the proposed approach. Our choice of com-

parative algorithms is based on their effectiveness and 

popularity in literature.  Since our algorithm emphasizes 

on the need for looking at both the spatial distances and 

attribute values, we evaluate our algorithm in the three 

evaluation setups, as shown in section 3.1. 

We evaluated both the effectiveness and efficiency of our 

approach using two real world datasets. In the spatial 

clustering literature, there are no fixed benchmarking 

datasets for evaluation of the algorithms. Our choice of 

datasets is based on the number of non-spatial dimen-

sions, and  the distribution of classes in both spatial and 

non-spatial dimensions.  To demonstrate the functionality 

of the fusion based approach, we will details the experi-

ments conducted using a data set with two spatial dimen-

sions. Next, we show our experimental results on high-

dimensional data sets to show the scalability of our ap-

proach.   

The first data set is US census tract housing data. The ob-

servations contain 4 non-spatial attributes land area, popu-

lation, median per capita income, median year built, as well 

as the latitude and longitude of the centroid of the tract 

from the 1990 Census. This resulted in 57,647 observations 

with complete data. The associated class information is the 

log of the median price of housing.  After looking at the 

Gaussian distribution of the class values, we binned the log 

of median price of housing  into 7 classes. The class distri-

bution for this dataset is equally influenced by the spatial 

and non-spatial features.  The second data set is a multi-

variate GIS data set. The actual forest cover type for a 

given observation (30 x 30 meter cell) was determined 

from US Forest Service (USFS) Region 2 Resource Infor-

mation System (RIS) data. Independent variables were de-

rived from data originally obtained from US Geological 

Survey (USGS) and USFS data. The total number of in-

stances (observations) are around 500,000. The attributes 

are distributed as 54 columns of data. The data represents 7 

types of  forest cover types. We found for this data set the 

class distribution is spatially biased. 

3.1 Evaluation Metrics 

Since the final results of an algorithm are clusters based 

on the fusion of different distance metrics, our evaluation 

metric should be independent of any particular distance 

metric. We identified three evaluation criterion to measure 

the quality of our clusters.

1. Cluster Accuracy: r-value (purity). The r-value as de-

fined in [10] is  
c

i
ianr

1

1   , 

where, c stands for the number of classes , ai denotes the 

number of objects of the cluster i with the largest repre-

sentation in class i, and n is the total number of objects in 

the database. This criterion measures the degree of corre-

spondence between the resulting clusters and the classes 

assigned a priori to each object.  

2.  Total number of cluster assignment errors: Number of 

objects that co-occur in a class versus that appear in dif-

ferent clusters. 

3.  Number of clusters found: Total number of cores or 

clusters discovered versus the actual number of classes in 

the data. 
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3.2 Effectiveness 

In this section, we demonstrate the effectiveness of our 

algorithm, in comparison to the KM, GDBSCAN and 

GraviClust, and for varying data set sizes.  We chose the 

census dataset to demonstrate the effectiveness our algo-

rithm, since the natural grouping of the data is  equally in-

fluenced by the spatial and non-spatial features.  

We varied the dataset sizes by gradually increasing the 

size of a region. We incrementally increased the longitude 

by one degree, thus obtaining varying data set sizes (and 

number of classes). This provides a natural spatial parti-

tion of the data, without losing the inherent spatial and 

non-spatial information. Instead if we have chosen ran-

dom samples of the objects in census data, the spatial in-

formation would become meaningless. Table 1 shows the 

data set sizes and the number of classes of each sample.  

Table  1. Sample Data Set Sizes and Number Of Classes 

Degrees of Longitude Number of Objects Number of Classes

4 694 5

4.2 1191 5

5 1931 5

6 2750 6

7 5984 6

8 7953 6

10 11841 7

13 15615 7

Table 2 illustrates the effectiveness of our algorithm in 

comparison with traditional k-means(KM) and the 

GDBSCAN algorithm. Higher r-value indicates better ac-

curacy. Since the competitor algorithms are input order 

and parameter dependent, we heuristically chose the set-

tings that resulted in maximum accuracy for the competi-

tors.

Table  2. Accuracy of the clusters based on r-value 

DataSet 
Size

KM GDBSCAN 
Gravi-
Clust

Proposed 
Fusion 
based Clus-
tering

(Cores) 

Proposed Fu-
sion based 
Clustering
( -Clusters)

694 0.49424 0.20749 0.56052 0.69308 0.67147 
1191 0.39463 0.59446 0.69353 0.82284 0.70109 
1931 0.37856 0.56499 0.4811 0.90005 0.6753 
2750 0.31927 0.39673 0.41127 0.80655 0.51709 
5984 0.30348 0.52741 0.39205 0.8735 0.54596 
7953 0.26619 0.58758 0.4382 0.87476 0.55363 
1184 0.31771 0.50452 0.45182 0.91031 0.56397 

The last two columns of Table 2, are the accuracy results 

separately for the cores and -clusters. The values in 

these columns illustrate that the cores we obtained are ef-

fective, considering either the spatial or non-spatial con-

straints. The high accuracy values of cores in comparison 

with the -clusters illustrate that the way the classes (in 

this case the range of house prices) are grouped, are based 

more on their spatial coordinates than the non-spatial fea-

tures.

The next effectiveness measure is cluster assignment er-

rors.  Table 3 and Fig. 2 illustrate the number of misclas-

sified objects using varying approaches. From Table 3  

and Fig. 2 we observe by using fusion based approach the 

number of objects misclassified  are significantly lower 

than the competitor algorithms. Note that even though k-

means used the spatial attributes it performed very poorly 

in comparison to the proposed fusion based approach.  

Table  3. Total Number of Misclassified objects 

#Objects KM GDBSCAN GraviClust 
Proposed Fusion 
Based Clustering 

694 351 550 305 213

1191 721 483 365 211

1931 1200 840 1002 193

2750 1872 1659 1619 532

5984 4168 2828 3638 757

7953 5836 3280 4468 996

11841 8079 5867 6491 1062

Percentage of Misclassified objects
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Figure  2.  The percentage of misclassified objects 

The final evaluation of effectiveness is based on the num-

ber of discovered clusters. Table 4   demonstrates the 

number of spatial partitions we found, are closer to the ac-

tual number of classes in the original data.  In each core 

there are varying numbers of -clusters, since all the re-

gions might not have same number of classes (in this case 

household price range). 

Table  4. The Number of Actual Classes Compared to  The Num-
ber of Discovered Cores/ -Clusters 

DataSize
Actual
Classes

Number of 
discovered
Cores

Non-Spatial
Clusters /Core 

Number of Dis-
covered Clusters

108 4 3 (3,1,2) 3
694 5 5 (4,3,1,1) 4
1191 5 6 (5,4,4,3,1) 6
1931 5 8 (5,4,3,1,1) 6
2750 6 8 (2,3,2,1,1) 6
5984 6 5 (3,2,2) 5

3.3 Efficiency

As we iterate for an optimal solution, the number of data 

objects that need to be clustered decreases significantly. 

Hence our algorithm is more efficient, because the algo-

rithm works on progressively reduced problem space. The 
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efficiency  can be further improved by using spatial in-

dexing for the core clustering. Fig. 3 illustrates the effi-

ciency of our algorithm in comparison to the other spatial 

clustering algorithms.  

Figure  3. Execution Time in Seconds on Dataset1 with Varying 

Number of Objects 

The efficiency results as applied on forest dataset are il-

lustrated Table 5. Here we show the iterations as opposed 

to time in secs, because we keep the dataset size constant 

to 5000 points, and vary the number of classes. Here it 

can be seen that the proposed approach converges much 

faster than KM. The iterations do not apply for 

GDBSCAN as it is a single pass algorithm. 

Table  5. DataSet 2: Number of iterations for convergence for 3,5& 
7 clusters 

#Classes KM GraviClust Proposed Fusion Based Cluster-
ing

3 14 12 11
5 21 20 19
7 46 17 15

In Table 6, we summarize the characteristics of our pro-

posed approach to some of the other classes of clustering 

algorithms supporting spatial features. 

Table  6. Advantages of the Proposed Fusion based Spatial       
Clustering

Distance 

Metrics 

K-

required 

Detects

Noise 

Requires 

parame-

ters/thresho

lds

Arbitary 

shape clus-

ters

Support 

for In-

cremental

Partition
Spatial ,or, 
Non-Spatial

Y N Y N Y

Density
Non-Spatial

Filter
N Y Y Y N

Gravity Spatial Y N Y N N
Proposed 

Fusion 
Clustering

Fusion
Based

N Y N Y Y

4. Conclusions

In this paper, we proposed an iterative and automated spa-

tial clustering algorithm based on the spatial and non-

spatial attribute fusion. The experimental evaluation 

shows that our  approach is more effective than the exist-

ing approaches, which either consider  location attribute 

as if it is another non-spatial feature, or ignore non-spatial 

attribute information altogether. The proposed clustering 

and employs a heuristic approach to find the optimal 

number of spatial core clusters. We also proposed a fusion 

based metric to find the optimal clusters and a stopping 

criterion for algorithm convergence. In summary, the pro-

posed algorithm has following characteristics : insensitive
to input order; automatic, that is the number of clusters 

need not be specified as input; iteratively clusters the data 

based on fusion of spatial and non-spatial attributes; intui-
tive spatial cluster comparison; permits the use of  sepa-

rate distance metrics for spatial and non-spatial features.  

is automated because it does not require any user input, 
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