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Abstract

Large scale scientific datasets are generally mod-
eled as k-dimensional arrays, since this model is

amenable to the form of analyses and visualiza-

tion of the scientific phenomenon often investi-
gated. In recent years, organizations have adopted

the use of on-line analytical processing (OLAP),

methods and statistical analyses to make strate-
gic business decisions using enterprise data that

are modeled as multi-dimensional arrays as well.

In both of these domains, the datasets have the
propensity to gradually grow, reaching orders of

terabytes. However, the storage schemes used

for these arrays correspond to those where the ar-
ray elements are allocated in a sequence of con-

secutive locations according to an ordering of ar-
ray mapping functions that map k-dimensional in-

dices one-to-one onto the linear locations. Such

schemes limit the degree of extendibility of the ar-
ray to one dimension only. We present a method

of allocating storage for the elements of a dense

multidimensional extendible array such that the
bounds on the indices of the respective dimen-

sions can be arbitrarily extended without reorga-

nizing previously allocated elements. We give
a mapping function F∗(), and its inverse F −1

∗ (),
for computing the linear address of an array el-

ement given its k-dimensional index. The tech-
nique adopts the mapping function, for realizing

an extendible array with arbitrary extendibility in

main memory, to implement such array files. We
show how the extendible array file implementa-

tion gives an efficient storage scheme for both sci-
entific and OLAP multi-dimensional datasets that

are allowed to incrementally grow without incur-

ring the prohibitive costs of reorganizations.
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1 Introduction

Datasets used in large scale scientific applications, are gen-
erally modeled as multidimensional arrays and matrices.

Matrices are 2-dimensional rectangular array of elements

(or entries) laid out in rows and columns. Although the
logical view of a rectangular array of elements need not be

the same as the actual physical storage, the elements of the

arrays are mapped into storage locations according to some
linearization function of the indices. An array file is simply

a file of the elements of an array in which the k-dimensional

indices of the elements map into linear consecutive record
locations in the file. The mapping of k-dimensional in-

dices to linear addresses may either be by a computed ac-

cess function, an indexing mechanism, or a mixture of both.
Operations on these array files involve accessing and ma-

nipulating sub-arrays (or array chunks) of one or more of
these array files. Such models for manipulating datasets

are typical in large scale computing performed by various

Scientific and Engineering Simulations, Climate Modeling,
High Energy and Nuclear Physics, Astrophysics, Compu-

tational Fluid Dynamics, Scientific Visualization, etc.

On-line analytical processing (OLAP) and decision
support systems depend highly on efficiently computing

statistical summary information from multi-dimensional

databases. A view of the dataset as a multi-dimensional
array model forms the basis for efficient derivation of sum-

mary information. The literature distinguishes OLAP on

relational model of data called ROLAP and that on multi-
dimensional model termed MOLAP.

Consider a dataset that maintains monitored values of
temperature at defined locations given by the latitude and

longitude at various time-steps. Figure 1 illustrates a

simple multi-dimensional view of a sample data as a 3-
dimensional array A[4][3][3] with assigned ordinal coor-

dinates. The entries shown in the cells correspond to the

linear addresses of the cells as the relative displacements
from cell A〈0,0,0〉.

Each cell stores the temperature value (not shown) as

the measure. Suppose we wish to maintain information on
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sales of some enterprise that has stores at different loca-
tions. The locations are defined by their spatial coordinates

of latitude and longitude often abbreviated as Lat/Long.

The sales information recorded for say three consecutive
months can be represented by Figure 1 which gives the

same view of the data as before but with values for sales as
the measures. A multi-dimensional array correctly models

the dataset in both domains of scientific applications and

MOLAP. Further common characteristics associated with
multi-dimensional model of data under these domains are

that:

1. The data incrementally grow over time by appending
new data elements. These may reach orders of ter-

abytes, as in data warehousing.

2. The datasets are mainly read-only. However, they may
be subject to expansions in the bounds of the dimen-

sions, e.g., as new monitoring locations are enabled or

new stores are opened.

3. The number of dimensions (i.e., the rank) of the array

may be extended.

4. The array representation can be either dense or sparse.

In the illustration of Figure 1, the array may grow by

appending data for new time-steps. When new locations

are added, the bounds of the Lat/Long dimensions may be
required to be extended. The mapping function depicted in

the above figure (represented by the label inside each cell)

corresponds to that of conventional array mapping that al-
lows extendibility in one dimension only; namely the di-

mension in the mapping scheme that is least varying. We
desire an array addressing scheme that allows extensions in

both the bound and rank of the array file and also efficiently

manages sparse arrays. In this paper we address primarily
the storage scheme for managing dense extendible array

efficiently. We discuss how the technique is tailored for

handling sparse arrays as well without detailed experimen-
tation due to space limitation.

Over the years special file formats have been extensively

studied and developed for storing multi-dimensional array
files that support sub-array accesses in high performance

computing. These include NetCDF [10], HDF5 [7] and

disk resident array (DRA) [11]. DRA is the persistent
counterpart of the distributed main memory array structure

called Global Array [12]. Except for HDF5, these array
files allow for extendibility only in one dimension. We say

an array file is extendible if the index range of any dimen-

sion can be extended by appending to the storage of pre-
viously allocated elements, so that new elements can be

addressed from the newly adjoined index range. The ad-

dress calculation is done without relocating elements of the
previously allocated elements and without modifying the

addressing function.

Let A[N0][N1] . . . [Nk−1], denote a k-dimensional array
where N j,0 ≤ j < k−1, is the bound on the indices of di-

mension j. An element, denoted by A〈i0, i1 . . . , ik−1〉, is ref-

erenced by a k-dimensional index 〈i0, i1 . . . , ik−1〉. Let L =

{ℓ0, ℓ1 . . . , ℓM−1}, be a sequence of consecutive storage lo-

cations where M = ∏
k−1
j=0 N j. An allocation (or mapping)

function F (), maps the k-dimensional indices one-to-one,

onto the sequence of consecutive indices {0,1, . . . ,M−1},
i.e., F : N0 ×N1 × ·· ·×Nk−1 → {0,1, . . . ,M− 1}. Given

a location index j, the inverse mapping function F −1( j),
computes the k-dimensional index 〈i0, i1 . . . , ik−1〉 that cor-
responds to j. The significance of inverse mapping func-

tions have not been much appreciated in the past but has

important use in computing the addresses of the neighbors
of an element given its linear storage address and also for

managing a general k-dimensional sparse array as opposed

to sparse matrices which is 2-dimensional.

Modern programming languages provide native support
for multidimensional arrays. The mapping function F ()
is normally defined so that elements are allocated either
in row-major or column major order. We refer to arrays

whose elements are allocated in this manner as conven-

tional arrays. Conventional arrays limit their growth to only
one dimension. We use the term row-major order in a gen-

eral sense, beyond row-and-column matrices, to mean an

order in which the leftmost index of a k-dimensional index
is the least varying. This is also sometimes referred to as

the lexicographic order. A column-major order refers to an

ordering in which the rightmost index varies the slowest.

In conventional k-dimensional arrays, efficient compu-
tation of the mapping function is carried out with the aid

of a vector that holds k multiplicative coefficients of the

respective indices. Consequently, an N-element array in k-
dimensions, can be maintained in O(N) storage locations

and the computation of the linear address of an element,
given its k-dimensional coordinate index, is done in time

O(k) since this is done by k− 1 multiplications and k− 1

additions. We achieve similar efficiency in the management
of extendible arrays by maintaining vectors of multiplying

coefficients each time the array expands. The computation

of the linear address, corresponding to a k-dimensional in-
dex, uses these stored vectors of coefficients. The vectors

of multiplicative coefficients maintain records of the his-

tory of the expansions and are organized into Axial-Vectors.
There is one Axial-Vector for each dimension and holds en-

tries that we refer to as expansion records. The fields of an

expansion record are described later.

Consider a k-dimensional array of N elements and
after some arbitrary extensions dimension j maintains

E j records of the history of expansion for dimension
j. Our approaches computes the linear address from

the k-dimensional index in time O(k + ∑
k−1
j=0E j) using

O(k ∑
k−1
j=0E j) additional space.

The technique being presented in this paper can be

adopted by compiler developers for generating mapping
functions for dense multidimensional extendible arrays in

memory as well. The Standard Template Library (STL) in

C++ also provides support for resizable vectors. However,
the general technique for allowing array extensions without

the extensive cost of reallocating storage is what we desire.

The approach we propose may be used in implementing
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special libraries such as the Global Array (GA) library [12]
and the disk resident array (DRA) [11] that manage dense

multidimensional arrays.

To handle sparse arrays, we adopt the technique of ar-

ray chunking [4, 7, 5], where the linear address of a chunk
is computed as for a dense array. The generated address

forms the key of an array chunk that is used in an index

scheme that stores only non-empty chunks. Partial chunks
can be further compressed and grouped into physical buck-

ets to maintain efficient storage utilization. A thorough dis-

cussion of our approach is in a follow-up paper.

The main contributions in this paper are:

• A definition of a mapping function for extendible ar-

rays that is applicable for both dense in-core arrays
and out-of-core arrays. We call the approach the The

Axial-Vector method. The general principle is not

new. The idea was first proposed with the use of
an auxiliary array. However, the storage overhead

using an auxiliary array could be prohibitive. The
new Axial-Vector method obviates the storage over-

head and also gives a new method for computing the

linear addresses.

• When extremely large array files are generated and

stored, any dimension can still be expanded by ap-

pending new array elements without the need to re-
organize the already allocated storage which could be

of the order of terabytes.

• The mapping function proposed in this paper incurs
very little storage overhead and can be used as a re-

placement for the access function for array files such

as NetCDF and the data chunks in the HDF5 file for-
mat.

• We discuss an extension of the technique to handle
sparse extendible arrays for both in-core and out-of-

core arrays.

The organization of this paper is as follows. In the next

section we present some details of the definition of the
mapping function for dense multidimensional extendible

arrays in main memory since the same mapping function

is adopted for accessing elements of extendible array files.
In section 3 we describe how an array file is implemented.

We describe how sparse multidimensional array files are

managed in section 4. We give some experimental com-
parison of the array mapping functions for extendible and

conventional arrays in section 5. We conclude in section 6

and give some directions for our future work.

2 The Mapping Function for an Extendible
Array

2.1 Addressing Function for a Conventional Array

First we explore some details of how conventional arrays

are mapped onto consecutive storage locations in memory.

Consider a k-dimensional array A[N0][N1] . . . [Nk−1], where

N j,0 ≤ j < k−1, denote the bounds of the index ranges of
the respective dimensions. Suppose the elements of this ar-

ray are allocated in the linear consecutive storage locations

L = {ℓ0, ℓ1 . . . , ℓM−1}, in row-major order according to the
mapping function F (). In the rest of this paper, we will

always assume row-major ordering and for simplicity we
will assume an array element occupies a unit of storage. A

unit of storage could be one word of 4 bytes, a double word

of 8 bytes, etc. An element A〈i0, i1, . . . ik−1〉 is assigned to
location ℓq, where q is computed by the mapping function

defined as

q = F (〈i0, i1, . . . ik−1〉) = i0 ∗C0 + i1 ∗C1 + · · ·+ ik−1 ∗Ck−1

where C j =
k−1

∏
r= j+1

Nr,0 ≤ j ≤ k−1.

(1)

and A〈0,0, . . .0〉 assigned to ℓ0.

In most programming languages, since the bounds of
the arrays are known at compilation time, the coefficients

C0,C1, . . . ,Ck−1 are computed and stored during code gen-

eration. Consequently, given any k-dimensional index,
the computation of the corresponding linear address using

Equation 1, takes time O(k).
Suppose we know the linear address q of an array ele-

ment, the k-dimensional index 〈i0, i1, . . . ik−1〉 correspond-

ing to q can be computed by repeated modulus arith-

metic with the coefficients Ck−2,Ck−3, . . . ,C1 in turn, i.e.,
F −1(q) → 〈i0, i1, . . . ik−1〉. When allocating elements of a

dense multidimensional array in a file, the same mapping
function is used where the linear address q gives the dis-

placement relative to the location of the first element in the

file, in units of the size of the array elements. The limita-
tion imposed by F is that the array can only be extended

along dimension 0 since the evaluation of the function does

not involve the bound of N0.
We can still circumvent the constraint imposed by F

by shuffling the order of the indices whenever the array is

extended along any dimension. The idea of extending the
index range of a dimension is simply to adjoin a block (or a

hyperslab) of array elements whose sizes on all dimensions

remain the same except for the dimension being extended.

2.2 The Mapping Function for an In-Core Extendible

Array

The question of organizing an extendible array in mem-

ory, such that the linear addresses can be computed in the

manner similar to those of a static array described above,
is a long standing one [15]. Some solutions exist for

extendible arrays that grow to maintain some predefined

shapes [14, 15]. A solution was proposed that uses an aux-
iliary array [13] to keep track of the information needed to

compute the mapping function. In [16], a similar solution

was proposed that organized the content of the auxiliary
array with a B-Tree. The use of auxiliary arrays can be

prohibitively expensive in storage depending on the pattern

of expansions of the array. We present a new approach to
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organizing the content of the auxiliary array with the use
of Axial-Vectors. The idea of using axial-vectors to replace

the auxiliary array was introduced in [20] but only for 2-

dimensional arrays. The method introduced maintains the
same information as in the auxiliary-array approach and

does not generalize easily to k-dimensional arrays. Fur-
thermore since it requires that information be stored for

each index of any dimension, the method incurs the same

prohibitive cost for certain array shapes. The method intro-
duced in this paper avoids these problems. First we show

how an in-core extendible array is organized with the aid of

axial-vectors since the same mapping function is used for
array files.

2.3 The Axial-Vector Approach for Extendible Arrays

Consider Figure 2a that shows a map of the storage allo-
cation of 3-dimensional extendible array. We denote this

in general as A[N∗
0][N

∗
1][N

∗
2], where N

∗
j represents the fact

that the bound has the propensity to grow. In this paper
we address only the problem of allowing extendibility in

the array bounds but not its rank. The labels shown in the

array cells represent the linear addresses of the respective
elements, as a displacement from the location of the first

element.

Suppose initially the array is allocated as A[4][3][1],
where the corresponding axes of Latitude, Longitude and

Time have the instantaneous respective bounds of N
∗
0 =

4,N∗
1 = 3 and N

∗
3 = 1. The array was extended by one time-

step followed by another time-step. The sequence of the

two consecutive extensions along the same time dimension,
although occurring at two different instances, is considered

as an uninterrupted extension of the time dimension. Re-

peated extensions of the same dimension, with no interven-
ing extension of a different dimension, is referred to as an

interrupted extension and is handled by only one expansion
record entry in the axial-vector.

The labels shown in the array cells represent the linear

addresses of the respective elements. For example, in Fig-
ure 2a the element A〈2,1,0〉 is assigned to location 7 and

element A〈3,1,2〉 is assigned to location 34. The array was
subsequently extended along the longitude axis by one in-

dex, then along the latitude axis by 2 indices and then along

the time axis by one time-step. A hyperslab of array el-
ements can be perceived as an array chunk (a term used

in [17, 7]), where all but one of the dimensions of a chunk

take the maximum bounds of their respective dimensions.

Consider now that we have a k-dimensional extendible

array A[N∗
0][N

∗
1] . . . [N

∗
k−1], for which dimension l is ex-

tended by λl , so that the index range increases from N
∗
l

to N
∗
l + λl . The strategy is to allocate a hyperslab of ar-

ray elements such that addresses within the hyperslab are
computed as displacements from the location of the first

element of the hyperslab. Let the first element of a hy-

perslab of dimension l be denoted by A〈0,0, . . . ,N∗
l , . . . ,0〉.

Address calculation is computed in row-major order as

before, except that now dimension l is the least varying

dimension in the allocation scheme but all other dimen-

sions retain their relative order. Denote the location of
A〈0,0, . . . ,N∗

l , . . . ,0〉 as ℓM
∗
l

where M
∗
l = ∏

k−1
r=0(N

∗
r ). Then

the desired mapping function F∗() that computes the ad-

dress q∗ of a new element A〈i0, i1, . . . ik−1〉 during the allo-

cation is given by:

q∗ = F∗(〈i0, i1, . . . ik−1〉) = M
∗
l +(il −N

∗
l )C

∗
l +

k−1

∑
j=0
j 6=l

i jC
∗
j

where C∗
l =

k−1

∏
j=0
j 6=l

N
∗
j and C∗

j =
k−1

∏
r= j+1

r 6=l

N
∗
r

(2)

We need to retain for dimension l the values of M
∗
l - the

location of the first element of the hyperslab, N
∗
l - the fisrt

index of the adjoined hyperslab, and C∗
r ,0 ≤ r < k - the

multiplicative coefficients, in some data structure so that
these can be easily retrieved for computating an element’s

address within the adjoined hyperslab. The axial-vectors

denoted by Γ j[E j],0 ≤ j < k, and shown in Figure 2b, are
used to retain the required information. E j is the number of

stored records for axial-vector Γ j . Note that the number of
elements in each axial-vector is always less than or equal

to the number of indices of the corresponding dimension.

It is exactly the number of uninterrupted expansions. In the
example of Figure 2b, E 0 = 2,E 1 = 2, and E 2 = 3.

The information of each expansion record of a dimen-

sion is a record comprised of four fields. For dimen-
sion l, the ith entry denoted by Γl〈i〉 consists of Γl〈i〉.N

∗
l ;

Γl〈i〉.M
∗
l ; Γl〈i〉.C[k] - the stored multiplying coefficients

for computing the displacement values within the hyper-
slab; and Γl〈i〉.Sil - the memory address where the hyper-

slab is stored. Note however that for computing record ad-

dresses of array files, this last field is not required, since
new records are always allocated by appending to the exist-

ing array file. In main memory an extendible array may be

formed as a collection of disjoint hyperslabs since a block
of memory acquired for each new hyperslab may not nec-

essarily be contiguous to a previously allocated one. Con-

tiguiety in memory allocation is only guranteed for unin-
trrupted expansion of a dimension, i.e., when the same di-

mension is repeatedly expanded.

Given a k-dimensional index 〈i0, i1, . . . , ik−1〉, the main
idea in correctly computing the linear address is in deter-

mining which of the records Γ0〈z0〉,Γ1〈z1〉 . . .Γk−1〈zk−1〉,
has the first maximum starting address of its hyperslab. The
index z j is given by a modified binary search algorithm that

always gives the highest index of the axial-vector where the
expansion record has a maximum starting address of its hy-

perslab less than or equal to i j.

For example, suppose we desire the linear address of

the element A〈4,2,2〉, we first note that z0 = 1,z1 = 0, and
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Array Address Inverse addr. Storage

Method calculation calculation overhead

Conventional O(k) O(k) 0

Axial Vectors O(k+
k log(k +E )
−k logk) O(k + logE ) O(kE )

Table 1: Summary of features of extendible array realiza-

tion.

z2 = 1. We then determine that

M
∗
l = max(Γ0〈1〉.M

∗
0,Γ1〈0〉.M

∗
1,Γ2〈1〉.M

∗
2)

= max(48,−1,12);
(3)

from which we deduce that M
∗
l = 48, l = 0,and N

∗
l = N

∗
0 =

4. The computation F∗(〈4,2,2〉) = 48+12× (4−4)+3×
2 + 1×2 = 48 + 0 + 6 + 2 = 56. The value 56 is the linear

address relative to the starting address of 0. The main char-

acteristics of the extendible array realization is summarized
in the following theorem

Theorem 2.1. Suppose that in a k-dimensional extendible

array, dimension j undergoes E j, uninterrupted expan-

sions. Then if E = ∑
k−1
j=0E j, the complexity of comput-

ing the function F∗() for an extendible array using axial-

vectors is O(k + k log(k +E )− k logk), using O(kE ) worst

case space.

Proof. The worst case sizes of the axial-vectors occur if

each dimension has the same number of uninterrupted ex-
pansions; i.e., E j = E /k. The evaluation of F∗() involves

k logE j followed by k multiplications k additions and 1

subtraction, giving a total of O(k + k(log(1 + E /k))) =
O(k + k log(k +E )− k logk).

The additional space requirement for the k axial-vectors

is O((k + 3)∑
k−1
j=0E j) = O(kE ).

Given a linear address q∗, it is easy to find, an entry

in the axial vectors that has the maximum starting address
less than or equal to q∗ using a modified binary search algo-

rithm as in the address computation. The repeated modulus

arithmetic as described in section 2.1 is then used to extract
the k-dimensional indices. We state without a formal proof

the following.

Theorem 2.2. Given a linear address q of an element of

an extendible array realized with the aid of k axial-vectors,

the the k-dimensional index of an element is computable by

the function F −1
∗ in time O(k + logE ).

The main results of the extendible array realization are

summarized in Table 1.

3 Managing Multidimensional Extendible
Array Files

An array file is simply a persistent storage of the corre-

sponding main memory resident array in a file, augmented
with some meta-data information, either as a header in the

same file or in a separated file. We will consider array files

as formed in pairs: the primary file Fp and the meta-data
file Fm. For extremely large files, the content in memory at

any time is a subset, or a subarray of the entire disk resident

array file. Scientific applications that process these arrays
consider array chunks as the unit of data access from sec-

ondary storage. Most high performance computations are

executed as a parallel program either on a cluster of work-
stations or on massively parallel machines. The model of

the data is a large global array from which subarrays are

accessed into individual workstations. The subarrays of in-
dividual nodes together constitute tiles of the global array.

Actual physical access of array elements is carried out in
units of array chunks for both dense and sparse arrays. We

discuss this in some detail in the next section.

For the subsequent discussions, we will ignore most of
the details of the organization of the array files and also the

details of the structure of the array elements. For simplicity,
we consider the array files as being composed of fixed size

elements, where each element is composed of a fixed num-

ber of attributes. Each attribute value has a corresponding
ordinal number that serves as the index value. Mapping of

attribute values to ordinal numbers is easily done for array

files. The primary file Fp, contains elements of the multidi-
mensional array that continuously grows by appending new

data elements whenever a dimension is extended. For ex-

ample, a dimension corresponding to time may be extended
by the addition of data from new time-steps. A meta-data

file Fm stores the records that correspond to the axial vec-

tors. The contents of the meta-data file Fm are used to re-
construct the memory resident axial vectors. Each expan-

sion of a dimension results in an update of an axial vector

and consequently the meta-data file as well.

Suppose an application has already constructed the

memory resident axial vectors from the meta-data file, then
the linear address of an element (i.e., a record), of the ar-

ray file given its k-dimensional coordinates, is computed

using the mapping function F∗(). Essentially, F∗() serves
as a hash function for the elements of the array file. Con-

versely, if the linear address q∗, of an element is given and
one desires the neighbor element that lies some units of co-

ordinate distances along some specified dimensions from

the current, such an element can be easily retrieved with
the aid of the inverse function F −1

∗ (). First we compute

the k-dimensional coordinate values from F −1
∗ (q), adjust

the coordinate values along the specified dimensions and
compute the address of the desired element by F∗(). The

relevant algorithms for these operations are easily derived

from the definitions of the functions presented in the pre-
ceding sections. One of the main features of our scheme

is that when extremely large array files are generated, each

dimensions can still be expanded by appending new array
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elements without the need to reorganize the allocated stor-
age of the files.

Two popular data organization schemes for large scale

scientific datasets are NetCDF [10] and HDF5 [7]. The
NetCDF maintains essentially an array file according to a

row-major ordering of the elements of a conventional array.

Consequently, the array can only be extended in one dimen-
sion. The technique presented in this paper can be easily

adopted as the mapping function of the NetCDF storage

scheme to allow for arbitrary extensions of the dimensions
of the NetCDF file structure, without incurring any addi-

tional access cost. HDF5 is a storage scheme that allows ar-

ray elements to be partitioned in fixed size sub-arrays called
data-chunks. A chunk is physically allocated on secondary

storage and accessed via a B+-tree index. Chunking allows
for extendibility of the array along any dimension and also

for the hierarchical organization of the array elements, i.e.,

elements of a top level array is allowed to be an array of
a refined higher resolution and so on. The mapping func-

tion introduced can be used as a replacement of the B+-tree

indexing scheme for the HDF5 array chunks. Other appli-
cations of the mapping function introduced here include its

use for the Global-Arrays [12] data organization and Disk-

Resident-Array files [11].

4 Managing Sparse Extendible Array Files

Besides the characteristics that multi-dimensional
databases incrementally grow over time, they also

have the unkind property of being sparse. Techniques

for managing large scale storage of multi-dimensional
data have either addressed the sparsity problem of the

array model [2, 3, 4, 5, 17, 18] or the extendibility prob-

lem [16, 19] but not both simultaneously. The sparsity
of multidimensional array is managed by array chunking

technique. An array chunk is defined as a block of data

that contains extents of all dimensions from a global
multi-dimensional array. Even for dense array, an array

chunk constitutes the unit of transfers between main
memory and secondary storage.

Figure 3a shows a 3-dimensional array partitioned into

chunks using index-intervals of 3. Addressing elements of

the array is computed in two levels. The first level address
computation gives the chunk address of the element. The

second level address is computed as the displacement of the

array element within the array chunk. The extendible array
addressing method maps the k-dimensional index of each

chunk into a Table Map. The table map of the chunks con-

tains pointers to the physical addresses of the data blocks
that hold chunks. An array chunk forms the unit of data

transfer between secondary storage and main memory. A
table map pointer is set to null if the chunk holds no array

elements. As in extendible hashing, the use of table map to

address chunks guarantees at most 2 disk accesses to locate
a chunk. Array chunks that have less than some defined

number of array elements can be compressed further.

The table map is one of the simplest techniques for han-

dling sparse extendible array but suffers from the prob-

lem of a potential exponential growth for high dimen-
sional datasets. Instead of a table map for maintaining ar-

ray chunks, we use a dynamically constructed PATRICIA

trie [9] to manage the table map of the chunks. Other meth-
ods of handling sparse multi-dimensional arrays have been

described in [4, 8]. Some of the techniques for handling
sparse matrices [1] can also be adopted.

4.1 Alternative Methods for Addressing Array

Chunks

The use of a table map for locating the physical locations
of array chunks relaxes the need for directly addressing ar-

ray elements with an extendible array mapping function.

One can further relax this constraint by doing away with
the extendible array mapping function entirely. Rather, a

method for constructing a unique address I〈i0,...ik0
〉 of an ar-

ray chunk from the k-dimensional index 〈i0, . . . ik0
〉 is all

that is required. One such method is given by concatenat-

ing the binary representation of the coordinate indices of an
array chunk. The unique address generated is then used in

an index scheme such as a B+-tree, to locate the physical

chunk where an array element is stored. This approach is
actually implemented in the HDF5 storage format. There

are two problems with this approach;

1. Either the k-dimensional index or the generated iden-

tifier for the chunk must be stored with the chunk. For
the latter case, an inverse function for computing the

k-dimensional chunk index from the chunk identifier
is needed but is less space consuming.

2. It does not handle both memory resident array and
disk resident arrays uniformly.

In general the table map can be replaced with any index-

ing scheme that maintains O(N) chunk address for exactly

N non-empty chunks. The use of a PATRICIA trie guar-
antees that. Using extendible array mapping function for

computing the linear address of a chunk has the advantage

of:

1. giving us a uniform manner of managing extendible
arrays resident both in-core and out-of-core.

2. allowing the replacement of the global k-dimensional

address of an array element by one which only defines

its linear location within an array chunk and yet en-
ables us to compute the global k-dimensional index

from the linear address.

4.2 Operations on Multidimensional Array Files

Besides the creation of the multi-dimensional array files,
and operations for reading, writing (i.e., accessing ) and

appending new element, the application domain dictates

the type of operations the array files are subjected to.
While multi-dimensional OLAP applications see the effi-

cient computation of the Cube operator [6, 21] as a sig-

nificant operation, applications in other scientific domains
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require efficient extractions of sub-arrays for analysis and
subsequent visualization. In both domains, efficiently ac-

cessing elements of a sub-array is vital to all computations

carried out.

The mapping function provides direct addressing for ar-

ray chunks and subsequently to the array elements. A

naive approach to performing sub-array extraction opera-
tion would be to iterate over the k-dimensional coordinates

of the elements to be selected and retrieve each array el-

ements independently. Suppose the cardinality of the re-
sponse set of the first selection class is ℜ. The naive ap-

proach performs ℜ independent disk accesses. But one can

do better than this worst case number of disk accesses. An
efficient method for processing any of the above queries

is to compute the chunk identifies of the element; and for
each chunk retrieved, extract all elements the chunk that

satisfies the request. Due to space limitation, detailed dis-

cussions on the structures, algorithms and experiments on
extendible sparse multidimensional arrays is left out in this

paper.

5 Performance of Extendible Array Files

The theoretical analysis of the mapping function for ex-

tendible arrays indicates that it is nearly of the same order
of computational complexity as that of conventional arrays.

The main difference being the additonal time requied by the

mapping function for an extendible array to perform binary
searches in the axial-vectors. We experimentally tested this

by computing the average access times of both the conven-

tional array and extendible array for an array size of ap-
proximately 108 elements of double data types. We varied

the rank of the array from 2 to 8 while keeping the size of

the array about the same. We plotted the average time over
10000 random element access for static arrays. These ex-

periments were run on a 1.5GHz AMD Athlon processor

running Centos-4 Linux with 2GByte memory. Figure 4a
show the graphs of the access times averaged over 10000

element access.

The graphs indicate that for static arrays, the cost of
computing the extendible array access function varies more

significantly with the rank of the array than for the conven-

tional array access function. Even though the complexity
of computing the access functions are both O(k), the ex-

tendible array access function shows strong dependence on

the array’s rank k due to the fact that k binary searches are
done in the axial-vectors.

We also considered the impact on the average access

cost when the arrays undergo interleaved expansions. The
experiment considered arrays of ranks 2 and 3 where the

initial array size grew from about 10000 elements to about

106 elements. For each sequence of about 10000 accesses
the array is allowed to undergo up to 16 expansions. A

dimension selected at random, is extended by a random

integer amount of between 1 and 10. Each time the con-
ventional array is extended, the storage allocation is reor-

ganized. The average cost of accessing array elements with

interleaved expansions is shown in Figure 4b. Under this

model, we find that the average cost of accessing array el-
ements for extendible arrays is significantly less than for

conventional arrays that incur the additional cost of reorga-

nization.

Similar experiments were conducted, for accessing ele-
ments of array files instead of memory resident arrays. Fig-

ure 5a compares the average time to access elements for 2,

3 and 4 dimensional static files. There is very little varia-
tion in the times of the conventional and extendible array

functions. However, when these times are computed with

interleaved expansions, the extendible array clearly outper-
forms the conventional array methods by several orders of

magnitude. Figure 5b shows the graphs for 2,3 and 4-

dimensional extendible array files only. The extra time and
storage required to reorganize the conventional array files

with interleaved expansions become prohibitive as the ar-

ray becomes large. One can infer from these results that, in
handling large scale dense multi-dimensional dataset that

incrementally grow by appending elements, the extendible
array mapping function should be the choice for addressing

storage.

We should mention that a competitive model for com-

parisons of multi-dimensional array file implementations

should be with the HDF5 data schemes. Our implementa-
tion currently does not include array caching of data pages

which the HDF5 implementation uses. Work is still ongo-

ing to add main memory buffer pools for data caching at
which time a fair comparison would be made.

6 Conclusion and Future Work

We have shown how a k-dimensional extendible array file
can be used to implement multi-dimensional databases.

The technique applies to extendible arrays in-core just as

much as for out-of-core extendible arrays that can be either
dense or sparse. The method relies on a mapping func-

tion that uses information retained in axial-vectors to com-

pute the linear storage addresses from the k-dimensional
indices. Given the characteristics of multi-dimensional

databases that they incrementally grow into terabytes of

data, developing a mapping function that does not require
reorganization of the array file as the file grows is a desir-

able future.

The method proposed is highly appropriate for most sci-

entific datasets where the model of the data is perceived
typical as large global array files. The mapping function

developed can be used to enhance current implementations

of array files such as NetCDF, HDF5 and Global Arrays.
Work is still on-going to incorporate our proposed solution

to multidimensional array libraries and to extend the tech-

nique for multi-dimensional datasets whose dimensions or
ranks are allowed to expand. We are also conducting com-

parative studies on the different techniques for managing

sparse multi-dimensional extendible arrays.
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Figure 1: A Lat., Long. and Time 3-D model of the data
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