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Abstract—In the era of Internet of Things, software systems
need to interact with many physical entities and cope with new
requirements at runtime. Self-adaptive systems aim to tackle
those challenges, often representing their context with a runtime
model enabling better reasoning capabilities. However, those
models quickly grow in size and need to be updated frequently
with small changes due to a high number of physical entities
changing constantly. This situation threatens the efficacy of
analyses on such models, as they lack an efficient management of
those changes leading to unnecessary computation overhead. We
propose applying scalable, incremental change management of
runtime models in the presence of a complex model to text trans-
formation. In this paper, we present and evaluate an example of
code generation of integer linear programs. In our case study
using synthesized models, we saved 35 - 83% processing time
compared to a non-incremental approach. Using our approach,
future self-adaptive systems can handle and analyze large-scale
runtime models, even if they change frequently.

I. INTRODUCTION

A major challenge regarding the integration of computer-
based systems with the physical world is the development
of convenient runtime models [1], [2]. Runtime states of
cyber-physical systems [3] have to be represented in such a
way, that they can be efficiently updated and analyzed for
self-adaptation. This comprises monitoring of change-events,
analysis of the resulting system state, planning of reactions
and the actual execution of them – a feedback loop [2].

A particularly challenging part of such feedback loops is
the deduction of reactions to updates, i.e., the reasoning in the
analyze and plan phase [4]. Often, logical or mathematical
formalisms are used to ensure only efficient and correct plans
are derived, e.g., integer linear programming (ILP) for opti-
mizing self-adaptations [5] or logic-based structural reasoning
like Alloy [6]. Although such techniques ease the deduction
of reaction-plans, they still require the derivation of an actual
problem specification suitable for their respective reasoning
tooling. Since changes in runtime models typically happen
frequently and mostly affect only small model parts [7],
planning problems should be deduced by incremental analyses.
Given a model update, analyses should only be re-evaluated
if influenced by the update. If not, previously cached results
should be reused. The benefit of such an incremental derivation
of planning problems increases with model size. Hence, in the
scope of the Internet of Things, i.e., in the presence of very
large runtime models, it is of uttermost importance [8]. A

common solution is to manually implement a cache mech-
anism. However, this leads to other serious problems like
inconsistencies [9].

Building on reference attribute grammar controlled rewrit-
ing – a promising technology to accomplish automatic, incre-
mental analyses of runtime models [10] – we will show its
application in our case to generate ILP optimisation problems.
Reference attribute grammars (RAGs) [11], are a declarative
formalism to specify semantics for tree structures. A RAG
extends tree instances of a context-free grammar to abstract
syntax graphs by superimposing a semantic overlay graph. In
contrast to ordinary attribute grammars [12], RAGs do not
support incremental evaluation out-of-the-box. For that reason,
we use RAG-controlled rewriting [10], which permits model
updates in terms of graph rewrites that in turn update analyses,
thus automatically achieving incremental evaluation. Using
RAG-controlled rewriting, we are able to model software
systems including their context, incrementally reason on those
systems and still cope with runtime model changes. In this
paper, we approach the following research questions:

RQ1 Are reference attribute grammars a suitable modeling
framework for large-scale runtime models?

RQ2 Is it possible to incrementally propagate changes in the
runtime model to domain-specific code generated from
this model?

RQ3 If yes, how beneficial is incremental change propagation
compared to non-incremental solutions?

In the following Section II, we describe our previous
research building the foundation of this work. Subsequently,
concepts and advances of our approach are described in
Section III, followed by an extensive evaluation in Section IV.
We compare our approach to related work in Section V and
conclude in Section VI.

II. PROBLEM DOMAIN: MULTI-QUALITY AUTO-TUNING

This section describes the domain of our case study and its
associated evaluation: Multi-Quality Auto-Tuning (MQuAT).
We selected this problem domain because it is a complex
problem involving runtime models and reasoning on them.
Furthermore, our previous research [5] revealed, that incre-
mental runtime model reasoning is a major challenge and can
not be easily integrated into existing systems.
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Figure 1: Overview of Multi-Quality Auto-Tuning.

MQuAT is an approach for model-driven, component-based
development of self-adaptive systems. The principal idea and
key contribution is to use models and a domain-specific
language enabling the developer to describe the self-adaptive
system under construction and generate the reasoning logic for
the analyze and plan phases from these models. Consequently,
the developer is enabled to focus on the problem specifica-
tion instead of the technical realization, which is automated
by code generation at runtime. Hence, a representation of
the system’s runtime state is required – a runtime model.
In other words, MQuAT adheres to the models@run.time
paradigm [13], which promotes the use of modeling techniques
at runtime. Figure 1 depicts the general principle of MQuAT.

In [5], the generation of reasoning logic to alternative
optimization languages was investigated. Here, we focus on
the generation of an integer linear program (ILP) [14] as
reasoning logic. In general, the optimization problem to be
solved by MQuAT is a selection and mapping problem.
MQuAT models systems as sets of soft- and hardware com-
ponents. Each software component can have multiple im-
plementations, each with different modes. For example, the
software component Compress has implementations like zip,
pigz and nanozip, to name but a few. The nanozip
implementation can be used in different modes, which, e.g.,
specify the amount of preallocated memory used for compres-
sion. Hardware components typically describe a hierarchical
structure, e.g., a component server rack comprising several
servers, each containing memory, CPUs and network devices.
Both, soft- and hardware components can be further detailed
by specifying their properties. For example, the hardware
component CPU has the property frequency and the software
component Compress has a property compression-ratio. De-
pendencies between components are specified using contracts,
that describe a provision/requirement relation on properties
of two interdependent components. For example, to guarantee
a maximum processing time of a compression algorithm, a
minimum amount of memory is required.

To process a user request, a system described using the
aforementioned concepts contains two dimensions of variabil-
ity: (1) each component, which is required to process the
request, has several implementations and (2) each implemen-
tation can be used in different modes on different hardware
resources. Thus, the optimization problem denotes the selec-
tion of the best implementations and their best mapping to
the available resources for a given user request. To solve this
problem, it is transformed to an ILP as optimization language.

The generated ILP comprises three types of constraints: (a)
structural constraints describing which software components
are required due to dependencies between them, (b) constraints
covering the variants of software-hardware mappings as a
dynamic knapsack problem [15] and (c) constraints covering
hardware resources, e.g., a maximum frequency of a CPU. On
a more abstract level, the ILP is an equation system Ax = b
comprising a matrix of coefficients A, a vector of bounds b
and the target variables x. Here A and b are the mentioned
constraints, in x are Boolean variables representing the choice
of one mode being deployed on a certain hardware component.

The two key problems of MQuAT and many other model-
driven approaches for self-adaptive software are (1) the scal-
ability of both the runtime model and the reasoning upon it
and (2) efficient change management, i.e., minor changes
to the runtime model should avoid a complete re-generation
and -evaluation of the reasoning logic. To realize the intercon-
nection between development models (e.g., models describing
the software architecture) with the runtime model, MQuAT
uses the Eclipse Modeling Framework (EMF) for both. There
are alternative, more lightweight modeling framework like
the Kevoree Modeling Framework (KMF) [9] as EMF is not
intended to be used at runtime. In this paper, we propose the
application of reference attribute grammar controlled rewriting
(RAG-controlled rewriting) as alternative modeling frame-
work, which in contrast to KMF offers incremental evaluation
in addition to being more lightweight. In particular, we will
show how the reasoning logic can incrementally be gener-
ated as an ILP using RAG-controlled rewriting. Therefore,
our approach is situated in the analyze and plan phases of
the feedback loop, as the optimization problem determines
whether and how the current configuration has to be changed.

III. RAG-CONTROLLED, INCREMENTAL ILP-GENERATION

Attribute grammars (AGs) are a well known technique for
semantic analysis in the field of compiler construction [12].
AGs use a context-free grammar to specify the structure of
tree-shaped data they operate on and attributes to analyse this
data. Attributes can have dependencies to one another and on
tree information, resulting in a statically known dependency
graph exploited by the attribute evaluator. Based on this graph,
incremental evaluation can be realized [16].

Reference AGs (RAGs) are an extension, where attributes
may resolve to remote tree nodes such that an semantic
overlay graph is superimposed on the spanning tree [11]. This
enables new scenarios, e.g., the specification of semantics
in metamodels like EMF Ecore [17]. However, dependencies
of reference attributes cannot be statically decided, impeding
incremental evaluation. RAG-controlled rewriting overcomes
this limitation by tracking dependencies dynamically such
that rewrites can incorporate them for invalidation [10]. It
enables dynamic incremental attribute evaluation for RAGs.
The RACR library [10], used in our case study to imple-
ment a runtime model for MQuAT, is a reference imple-
mentation of RAG-controlled rewriting. It can be found at
https://github.com/christoff-buerger/racr.

https://github.com/christoff-buerger/racr
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Figure 2: Grammar overview. HWRoot and Resource are hardware elements; SWRoot, Component, Implementation and Mode
are software specific. The non-terminals Property and Clause are cross-cutting, whereas the Request represents the expectations
from a user and triggers an evaluation of the model.

A. General Solution Overview

Figure 2 shows a simplified grammar using our approach
to describe a system subject to auto-tuning, i.e., possible
types of model elements and their relationships. The notation
follows JastEMF [17], showing nonterminals as rectangles
with terminals of them listed beneath the name of its enclos-
ing nonterminal. Containment relations model nonterminals
in production right-hands, thus, implying non-cyclic entity
relations, i.e., subtrees. Arrows denote attributes which are
known to be of a type the arrow is pointing to. The following
three concerns are represented as nonterminals:

The hardware subtree with root HWRoot denotes an ar-
bitrarily deep hierarchy of Resources, which are grouped
by common types (e.g., CPU). Resources have a set of
Clauses describing their current state, e.g., “CPU frequency
is 1.4GHz”. Clauses are linked to Properties, e.g., repre-
senting CPU frequency.

Software is represented as a hierarchy, too. The semantics
of Components, Implementations and Modes are as
described in Section II. Furthermore, implementations can
require components, forming a dependency tree. Modes are
described by a quality contract – a set of Clauses describing
their non-functional behavior. With such clauses, properties
like an execution time t can be described depending on input
parameters, e.g., t = n2, where n denotes input file size.
Different modes of the same implementation can have either
the same clauses, the same properties, but different values or
completely different clauses.

Finally, a Request denotes the requested functionality
along with expected values for non-functional properties. An

example could be a user requesting to compress a video file,
requiring a maximum execution time to finish this operation
and a maximum file size after compression.

Figure 3 shows a simplified structure of an example system
using the described grammar to build an AST representing
such a system. It includes three parts: a) two hardware
components, b) nine software components, implementations
and modes (indicated with C, I and M, respectively) and c)
the request. With such an AST, the structure and properties of
hard- and software can be described. Further, their relationship
is modeled with clauses defining requirements and provisions.

All the aforementioned elements can be modeled using
RAGs. Hence, they are a suitable modeling framework for
runtime models, which partially answers RQ1. To show that
RAGs are suitable for large-scale runtime models, we have
evaluated our approach in Section IV.

B. Attribution used for ILP-Generation

To realize ILP-Generation using RAGs, attributes imple-
menting a model-to-text transformation have to be specified
for each nonterminal of the grammar. The computation of
these attributes is local to this nonterminal and can be reused
by other attributes, as will be described later. As they are
computed incrementally, the whole model transformation is
incremental, thus tackling the problems revealed in Section I.

Figure 4 shows the AST introduced above in Figure 3 at
runtime. It includes the most important attributes involved in
the computation, their dependencies and whether they will be
evaluated in a certain situation described below. The syntax
of attributes will be introduced in the next paragraph. An
evaluation always begins at the attribute to-ilp, starting the
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Figure 3: Example AST, built using the grammar in Figure 2.

generation process. Any other invocation is controlled by
RACR, ensuring that only those attributes are re-evaluated,
whose values might have changed because they depend on up-
dated model information. Attributes are defined to fit naturally
in the structure of the ILP. In the following, the most important
attributes are briefly explained. Their syntax is denoted by
underlines, e.g., to-ilp is represented as ti in Figure 4.
objective This attribute is defined on the nonterminals Root

and Resource, to compute the objective function globally
(Root) or partly for the given Resource.

to-ilp Gathers the ILP constraints for each clause of the cur-
rent request. Both, software and architectural constraints
result from the invocation of to-ilp on components and
implementations. Software constraints represent the de-
pendencies of implementations and components, whereas
architectural constraints ensure that only one mode of an
implementation per component is deployed.

nego Models the dynamic knapsack problem (negotiation),
which was outlined in Section II. Its constraints comprise
property values required by components and provided by
components and resources. Thus, nego depends on nhw
(negotiation of hardware resources), nsw (negotiation of
software modes) and nreqc (request constraints).

binary-vars Computes all used variables and their bounds.
The attribute binary-vars is a good example to demonstrate

the strength of incremental evaluation on a small scale. If, for
example, the value of a hardware entity has changed (e.g.,
the CPU frequency has been changed), this attribute does not
need to be re-evaluated, because the change will not introduce
new variables. Thus, its value will be read from cache, as all
information it depends on, whether tree-structure or attribute
values, are unchanged.

Figure 4 shows, which attributes need to be re-evaluated in
case of a property change of CPU1. Starting with to-ilp on
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Figure 4: Attribute computation and dependencies for an
example AST.

Root, the required attribute values objective and binary-vars
on Root and to-ilp on SWRoot and Request are read from
cache, since they do not depend on any changed information.
Those cached attributes are marked half-grey. Other attributes
which normally would be evaluated for those attributes –
e.g. to-ilp on Compress – will never be called. Such skipped
attributes are shown in white. They are another reason for
the savings of incremental evaluation. However, the attribute
nego on SWRoot will be re-evaluated, since some attributes
it depends on – like nhw – need to be re-evaluated. Those
attributes are shown in black.

Using this approach, we can incrementally propagate run-
time model changes to text or code generated from it, thus
affirming RQ2. Showing the scalability of our approach, we
evaluated models of different sizes and change scenarios.

IV. EVALUATION

To answer the research questions RQ1 and RQ3 posed in
section I, we created synthesized models of systems specified
by the grammar described in Section III. More concrete, we
strive to measure the benefit of incremental evaluation by
comparing our approach to non-incremental versions of it. By
using synthesized models it is possible to create arbitrary large
systems and, thus, show the suitability and scalability of our
approach. The evaluation results and an executable test setup
are available at https://github.com/rene-schoene/racr-mquat.

https://github.com/rene-schoene/racr-mquat
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A. Test Setup
Resources of the created models have two non-functional

properties. Software components build a “requirement chain”:
all but the last component require the next one. In other
words, we generate a simplified variant of Pipe-and-Filter
architectures [18]. Every clause has its values chosen such
that at least one valid solution of the generated optimization
problem exists. To enable a close investigation, our test setup
provides variability in the following parameters:
(a) number of hardware resources, ranging from 10 to 400,
(b) subresources, either 10 per resource or a flat subtree,
(c) number of software components, ranging from 1 to 90,
(d) implementations per component, 1, 2, or 10, and
(e) modes per implementation, either 2 or 10.

In total, 33 different parameter configurations were used.
Based on our experience, we identified three kinds of changes:
Update-HW Update property values in clauses of hardware

resources (continuous monitoring)
Structure-HW Remove certain hardware resources, or add

new ones (hardware maintenance)
Structure-SW Remove certain software modes, or add new

ones (software maintenance)
The category Update-SW was left out, because we do not ex-
pect a changing behavior of existing implementations. Instead,
new software modes or implementations will be added, which
is already covered by Structure-SW.

To show the applicability of our approach under more
realistic conditions, a fourth scenario “mixed” was measured.
All three kinds of changes were mixed testing the stability of
our approach in contrast to specific, one-sided changes. Based
on our experiences, we weighted the kinds with 80% Update-
HW, 10% Structure-HW, 5% Structure-SW. In the remaining
5%, there is no change.

Figure 5 explains the characteristics of one measurement.
First a model for a given set of parameters is generated. Then,
the model is transformed to an ILP, henceforth termed initial
step. Once the ILP has been generated the first time, a number
of changes of a selected kind is applied to the model. After
each model change, the ILP transformation is repeated in
successive steps.

To show the advantage of incremental evaluation, three
different strategies for change management are examined,
namely incremental, semiautomatic and flushed. Incremental
describes our approach and fully utilizes the cache.

Semiautomatic means enabling caching only for auxiliary
attributes unrelated to ILP generation and which are most

likely manually cached and maintained in a handcrafted solu-
tion, e.g., attributes computing a filtered collection contain-
ing available hardware resources. In contrast to the actual
ILP generation, such auxiliary attributes are simple analyses,
whose cache maintenance is simple enough for a handcrafted
solution. The semiautomatic strategy is important for realistic
measurements, since one usually takes rigorous advantage of
such attributes in a sense of calling them many times in
algorithm-based analyses. To compare our incremental solu-
tion to completely non-cached analyses would be unrealistic
and just confirm the well-known fact of exponential attribute
evaluation complexity in case of naïve evaluation [19], [20].

The flushed strategy has the cache enabled, but it gets
invalidated after each change. Thereby the first invocation
of each attribute needs to be computed again, but further
invocations in the same step can rely on the attribute being
cached. Depending on the context, we will also use the names
of each strategy to refer to an execution using this strategy.

For each step, the time required to generate the ILP was
measured, excluding disk IO and cache flushing. Additionally,
to avoid dependencies of our results to a concrete hardware
used to measure, the numbers of called and actually com-
puted attributes were counted. These are indicators, how well
the strategy makes use of incremental evaluation, because a
lower number of computed attributes implies less computation
needed. Using an incremental approach, the set of computed
attributes is always a real subset of those evaluated using
a non-incremental approach. Using the generation times, we
are able to answer RQ1, i. e., prove the suitability of our
approach. Taking all measured data into account, the benefit
of incremental ILP generation is visible, thus answering RQ3.

Possible threats to the validity of our evaluation are the
following. We only investigated synthesized models due to
the need to generate models of many different sizes. Based
on our measurements however, we are confident in future
applications on realistic MQuat applications of significant size.
Further, the number of steps for the first three scenarios is
very small, but we believe they are sufficient to show their
characteristics. To further counter this point, we added the
fourth scenario using all kinds of changes and 100 steps.
Finally, we provide no formal correctness proofs in terms of
finding an optimal solution. For ILP such proofs are well-
known however. A correctness proof therefore boils-down
to show that the generated ILP specifications satisfy our
intention, in particular in case of incremental generation after
model updates.



B. Measured Generation Times

Figure 6a shows the generation time as box plots for
eight consecutive hardware value changes and, thus, seven
re-generations. Apparently, the incremental strategy performs
best for all successive steps, utilizing cached values. Using the
flushed, each step needs the same time, as flushing the cache
implies a complete re-computation of all attributes. Disabling
the cache for all generation-related attributes leads to a similar
picture, however for different reasons: The initial step takes
longer on average than successive steps, as auxiliary attributes
are still cached. Those cache entries need to be created, but
can be used on successive steps to decrease execution time.
The incremental strategy clearly takes less time for generation,
as it is on average faster by a factor of 4.81 and 5.69 compared
to semiautomatic and flushed, respectively.

Figure 6b depicts the generation times when changing the
hardware structure. Each even step removes some resources
from the model, whereas each odd, successive step adds the
removed resources again. Flushed runs longer than semiauto-
matic for the second and third resource removing step, because
of cache updates of auxiliary attributes. For all other steps,
semiautomatic lags behind flushed for the same reasons as
in the Update-HW case. With the incremental strategy all
successive steps can be completed faster compared to the other
strategies, because of the unrestrained use of cached values.

Figure 6c unveils the shortcoming of current attribution,
even when using the incremental strategy. In the second to
fourth step, new modes are added, which are removed together
with existing modes in the next three steps. For all strategies,
an increase of the generation time is visible when modes
are added. However, the order of measured generation times
always stays the same: flushed is faster than semiautomatic
and slower than incremental. The higher computation times
of structural changes compared to Update-HW are the result
of newly computed constraints for hardware resources and new
parts of constraints for new software modes.

In Figure 7, the generation times for the mixed scenario
along with their averages are depicted for all three different
strategies. The observed execution time is shown using box
plots, as all different combinations of parameters are shown
in this figure. For semiautomatic and incremental, only the
initial step takes longer, because a cache needs to be built up
(auxiliary attributes for semiautomatic). Although all attributes
are actually cached in the incremental strategy, this initial step
needs less time compared to semiautomatic, because cache-hits
of ILP-related attributes occur in this initial step and reduce
computation. Those observations cannot be made for flushed.
Generation times always stay about equal except after a change
adding new software modes leading to more computation and
increases all following generation times. They stay equal,
because the cache is flushed right after the change, leading
to a similar computation effort in each step.

Note, that the initial step of flushed and incremental takes
the same amount of time, as exactly the same computation is
done. The cache is flushed after generating the ILP, thereby

not influencing the first measured time. The most obvious
difference of Figure 7c compared to the other two strategies
is the small generation time for all non-structural changes
(updating resource properties and no change). For structural
changes, more computation time is needed, as stated above. All
effects lead to average times of 3.41, 22.43, and 27.79 seconds
for incremental, flushed and semiautomatic, respectively.

C. Results for Attribute Metrics

In addition to generation times, we evaluated the following
attribute metrics. Below, compN and calledN denote the
number of computed and called attributes for strategy N ,
respectively. Notably, N ∈ {1, 2} denotes two strategies,
which are compared with each other.

Cache Miss Rate = comp1

called1
. This shows the degree of “in-

crementality” for each strategy, i.e., how good the cache
entries are reused on average. Lower values are better.

Cache Potential = comp1

called2
. The second metric shows the

potential increase of cache usage when using one strategy
over another and can be compared to the cache miss rate.

Speed-Up = comp2

called2
− comp1

called2
= comp2−comp1

called2
. This is the

difference of the second strategy’s cache miss rate and
potential to the first. It shows the gain of using one
strategy over another. A higher value indicates that fewer
attributes need to be computed using the first strategy.

Table I shows the average for each attribute metric, scenario
and strategy (incremental, flushed, semiautomatic). Concern-
ing cache miss rates, the incremental approach is obviously
always ahead of the other strategies. This is because the cache
is maintained between changes (in contrast to flushed) and
used for each attribute (in contrast to semiautomatic). Flushing
the cache between changes leads to a drop of about 7.8% on
average. Using no cache apparently results in a cache miss
rate of 1.0, as every called attribute is also computed.

When using the incremental approach, fewer attributes get
called in the first place. This is because calls to dependent
attributes can be skipped, if the value of the calling attribute
is read from cache. As an example, in the biggest mixed-
scenario attributes were called 10 135 309 times in total while
using incremental, 41 106 310 with flushed and 82 660 090
using the semiautomatic strategy.

Regarding cache potential of flushed to incremental, values
range from 2.8% for mixed to 32.3% for Structure-SW. This
indicates, that in the latter case, our approach has less impact.
Values of semiautomatic to incremental are even lower, indi-
cating more computations can be saved using our approach.

For speed-ups, one can observe two effects. The first in-
cludes speed-ups from semiautomatic, which in every case is
on average between 82 and 90%. This can be read as a direct
reduction of computation, i.e., using either incremental or
flushed saves those amounts of attribute computations. Hence,
this also results in lower execution times. In the “mixed”
scenario, which includes all kinds of changes, our technique
still provides good results with average savings of 16%.
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Figure 6: Generation times for each step, i.e., after a change of the model, using different strategies and kinds of changes
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Figure 7: Generation times for each step, i.e., after a change of the model, and averages (bold line) for the mixed scenario

Strategy inc flushed semi inc→flushed inc→semi flushed→semi

Metric Cache Miss Rate (%) Pot Sp Pot Sp Pot Sp

Update-HW 0.210 0.319 1.0 0.056 0.263 0.031 0.969 0.177 0.823
Structure-HW 0.195 0.321 1.0 0.154 0.166 0.086 0.914 0.179 0.821
Structure-SW 0.330 0.341 1.0 0.323 0.018 0.171 0.829 0.181 0.819
Mixed 0.116 0.335 1.0 0.029 0.307 0.014 0.986 0.167 0.833

Table I: Attribute metrics showing Cache Miss Rate, Potential and Speed-up

D. Conclusion of the Evaluation

We have shown the scalability of our approach, saving 35
to 87% w.r.t. processing time and 1.8 to 16% w.r.t. cache
usage. With that, we have shown the benefit asked by our
initial research question RQ3.

Besides the shown advantages of our presented solution,
the usage of RAGs has further advantages, which are diffi-
cult to quantize. First, the model transformation is specified
declaratively. This enhances maintainability and modularity,
as attributes can be seen as aspects that can be changed
independently [21]. Second, RAGs and term rewriting have a
formal basis [22], [11], which can be used to verify properties
like termination or complexity. Finally, like in our previous
work [23], cache-consistency and efficiency is automatically
ensured by our approach, as attributes are recomputed only if
the values they dependent on changed.

A disadvantage using synthesized models is the loose link
to real examples, which is to some degree mitigated by the
diversity of created models and applied changes. However, it

was mandatory to prove scalability.

V. RELATED WORK

This work combines several research areas, including self-
adaptive systems and models at runtime, incremental compu-
tation, and model transformation.

a) Self-adaptive Systems: There are plenty of approaches
to design self-adaptive systems, providing frameworks and
middleware. Most of these systems, such as MUSIC [24],
DiVA [6] or ConFract [25], use models to describe their
state and context. For a better distinction, we classify our
solution using a survey in the field of self-adaptive systems
[26], which aims at building a taxonomy for engineering
such systems. Our approach adapts reactively, i.e., it reacts to
previous events. The reason for adaptation is the user, managed
elements are software components and the controlling system
is a middleware. While the kind of changes is currently
compositional, one could also think of parameter adaptation.
As already mentioned in Section II, the adaptation logic is
external, criteria for decision are models, and our approach



is centralized, because RACR is not yet developed to be a
distributed application.

In [9] and [27], the developers of KMF aim at gathering
requirements for runtime models and comparing their work to
EMF. They consider a small memory footprint, efficient model
navigation and thread-safety. In [9], caching was proposed
as a promising solution which can cause problems such as
inconsistency. Using RAG-controlled rewriting, caching is
provided with the guarantee of being consistent.

There are a few works on reasoning at runtime having a
specific focus on efficiency. One work is about time-distorted
reasoning at runtime [28], where KMF is used to efficiently
handle changes in runtime models. They do not follow the
standard approach of having multiple snapshots of the model
for different times, but instead all information is stored in
one model. Every model element has special operations to
shift between versions of it in time. The main difference
to our approach is, that they analyze using historical data
and a standard imperative language. In this work we only
known about the current state, but can use already computed
intermediate results from unchanged parts of the model.

b) Incremental Evaluation: Incremental evaluation is the
“efficient recomputation in response to changes in input data”
[29]. It is also called “self-adjustable computing” in the context
of imperative programs tracking data and control dependencies
[30]. Most works in this field agree on the advantages, such
as efficiency, gained at cost of higher memory consumption
[31], [32]. However, they propose either language extensions
or new languages with the need to explicitly wrap access to
data. Using RAG-controlled rewriting, the way of accessing
data is not changed, but caching is provided automatically.

c) Model Transformation: Model Transformation is an
active field of research with many approaches mostly targeting
design time. For a better comparison of this work, we clas-
sify our approach using a taxonomy [33]: Source and target
model in our approach are both hierarchical, from different
technical spaces and exogenous. The transformation is one-
to-one, horizontal, syntactical, fully automatic, complex and
information-preserving. Using RACR, the transformation is
CRUD-changeable, without suggestions and highly reusable.
The transformation is tested and has neither inconsistency
handling, generality of rules nor bi-directionality. However,
rules are decomposable and support change propagation. It is
designed to be scalable and extensible at design time, but not
yet interoperable nor widely used within the community.

Another survey covering model-to-text (M2T) transforma-
tions [34] comprises three categories for comparison: language
coverage, execution phases and overhead. Racr-mquat sup-
ports arbitrary input and output elements, NACs as well as
PACs, but no imperative parts. Source minimality, detection
at every granularity, atomic inserts and deletes are ensured
by RACR. As our approach exploits lazy evaluation, change
log optimization is supported indirectly. Traces are automati-
cally computed for Model2Transformation at runtime. Change
propagation is partial, unidirectional, at the level of rules and
sequentially. Overheads are mostly for memory, minor runtime

and not specification.
Another approach is eMOFLON [35], which is also included

in the previous survey and based on Triple Graph Grammars
and the Eclipse Modeling Framework. It supports bidirectional
transformation, but without support for incremental evaluation.

Another approach of Kusel [34] is EMF-IncQuery [36],
which combines the query language VIATRA2 with EMF
models. It caches query results and updates those values lever-
aging the notification mechanism provided by EMF. In [37],
template-based M2T transformations are extended by adding
signatures to it, such that templates are only computed if their
corresponding signature has changed. However, signatures can
either be generated automatically, sometimes not covering the
complete dependencies, or manually, which is time-consuming
and error-prone [37]. Using our approach, such dependencies
are automatically calculated and ensured at runtime.

Bergmann et. al showed incremental model transformation
[38] using a RETE-based pattern matcher storing matched left
hand sides and update them incrementally upon changes. The
main difference is, that our approach is only applicable to
trees with overlay graphs, but provides much better support
for complex analyses and not just plain transformations.

VI. CONCLUSION AND FUTURE WORK

In this work, we enumerated several challenges concern-
ing the use of runtime models with a particular focus on
scalability. After a brief introduction of previous work, we
described our approach involving the use of references at-
tribute grammars to model and reason about the state of a
system. We showed, that our approach, RAG-controlled re-
writing, is suitable to describe hierarchical runtime models and
corresponding analyses using attributes. Furthermore, those
analyses are incrementally evaluated, as only those parts of the
analysis affected by model updates are re-evaluated. Hence,
unnecessary and possibly costly evaluations can be skipped.

Using synthesized models of varying size, we achieved
a speed-up of 35 to 87% w.r.t. processing time and 1.8 to
16% w.r.t. cache usage. Thus, it is possible to efficiently use
runtime models within self-adaptive systems despite many
small changes affecting only parts of those models. In addition,
runtime models, their analyses and updates are declaratively
specified using well-founded metacompiler technologies.

In the near future, we plan to investigate models of bigger
and realistic use cases, evaluate the memory usage and use our
approach to develop practical MQuAT applications. Further-
more, we strive to implement existing benchmark cases, like
the TTC 2015 Train Benchmark Case [39] to allow for better
comparison with other tools. In the long term, we envision
a heuristic approach for solving the optimization problem
described in Section 2 completely implemented using RACR,
thus fully utilizing incremental evaluation.
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