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Abstract

Clustering is a popular data analysis tech-
nique to identify homogeneous groups of
objects based on the values of their at-
tributes, used in many disciplines and
applications. This extended abstract of
our undergraduate thesis for obtaining the
engineer degree in informatics and sys-
tems, presents an approach based on the
Social Spider Optimization (SSO) algo-
rithm for optimizing clusters of data, tak-
ing as metric the sum of euclidean dis-
tances. Other important algorithms of the
literature were implemented in order to
make comparisons: K-means algorithm,
and a Genetic Algorithm (GA) for Clus-
tering. Experiments were performed us-
ing 5 datasets taken from the UCI Ma-
chine Learning Repository, each algorithm
was executed many times and then the fol-
lowing measures were calculated: mean,
median, minimum, and maximum values
of the results. These experiments showed
that the SSO algorithm outperforms the
K- means algorithm, and it has results
equally competitive as the GA. All these
results were confirmed by statistical tests
performed over the outputs of the algo-
rithm.

1 Introduction

Clustering is useful in several analysis such as ex-
ploration of patterns, machine learning including
data mining, documents retrieval, image segmen-
tation and pattern classification. However in many

This work was started when first and second authors
were undergraduate students at the National University of
San Antonio Abad del Cusco and was finished when the au-
thors were graduate students at the University of Brasilia,
both receiving a CAPES scholarship.

of these problems there is little prior information,
such as statistical models. It is under these restric-
tions that clustering is particularly appropriate for
the exploration of interrelationships between data
to make a preliminary evaluation of its structure
(Jain et al., 1999). Thus new conditions imposed
by Big Data presented new challenges at different
levels including clustering.

The term clustering is used in several commu-
nities to describe methods for grouping of un-
labeled data (Jain et al., 1999). Clustering is
the task of discovering groups and data structures
that are in some way or another ”similar”, with-
out using known structures (vijayalakshmi and
Renuka Devi, 2012). Intuitively, patterns within a
group are more similar compared to those patterns
belonging to a different group. Here, the goal is
to develop an automatic algorithm that can accu-
rately classify an unlabeled dataset in groups.

Recent literature classifies clustering algorithms
in hierarchical, partitioning, and overlapping (Xu
and Wunsch, 2009). The partitional algorithm di-
vides a dataset into a finite number based on cer-
tain criteria known as a measure of fitness. The fit-
ness measure affects directly the natural formation
of the groups, once a measure is selected the task
of the partition becomes an optimization problem.

K-means algorithm is the most fundamental
concept of partitional grouping, was published in
1957 by Lloyd (Lloyd, 1982). In this case the
minimization of the Euclidean distance between
its elements and the center of a cluster was con-
sidered as a criterion of optimization. Inspired by
K-means many algorithms were developed such
as: Bisecting K-means (Steinbach et al., 2000),
sort-means (Phillips, 2002), X-means (Pelleg and
Moore, 1999), among others.

Recent studies reveal a new trend, which was
named as stochastic algorithms with randomized
and local search meta-heuristic. The random pro-
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cess generates arbitrary solutions that explore the
search space and are responsible for achieving
global solution (Nanda and Panda, 2014). The
first meta-heuristic inspired by nature was the ge-
netic algorithm developed by Holland and his col-
leagues in 1975 (Holland, 1975). This algorithm
is classified as evolutionary algorithm. On the
other hand, new bio-inspired optimization algo-
rithms are being introduced, such is the case of the
algorithm inspired by the social behavior of spi-
ders (Cuevas et al., 2013) classified as swarm in-
telligence algorithm proposed in 2013, which had
not been applied to the clustering problem until
our proposal.

This extended abstract of our undergraduate
thesis for obtaining the engineer degree in in-
formatics and systems (Vera-Olivera and Soncco-
Álvarez, 2016), presents an approach based on the
SSO algorithm for the clustering problem. The
contribution of this work is to show that the SSO
algorithm can produce competitive results regard-
ing classic approaches such as: (a) the k-means al-
gorithm, which was implemented as presented in
(Maulik and Bandyopadhyay, 2000); and (b) a ge-
netic algorithm approach for the clustering prob-
lem, which was proposed by Maulik and Bandy-
opadhyay (2000). The metric used for the com-
parisons is the sum of euclidean distances of the
elements of the clusters to their respective cen-
ter, this metric is the output of the algorithms.
For the experiments were used 5 datasets from
the UCI Machine Learning Repository, for each of
these datasets the algorithms were executed sev-
eral times, and then the following measures were
calculated: mean, median, minimum, and max-
imum values. This experiment showed that the
SSO algorithm has better results compared to the
ones obtained by the K-means algorithm, also the
SSO algorithm has equally competitive results as
the GA. Additionally, a statistical analysis was
performed, since we are working with stochastic
algorithms, using the Kolmogorov-Smirnov test
and the Wilcoxon rank sum test as discussed in
(Demšar, 2006), (Durillo et al., 2009), (Muñoz et
al., 2011). The results of these statistical test con-
firmed the results of the experiments.

This paper is organized as follow: in Section
II, are given some definitions related to the clus-
tering problem; in Section III is given the original
proposal of the SSO algorithm; in Section IV, de-
tails of our approach based on the SSO algorithm

for the clustering problem are presented, also the
pseudo-code of the algorithms is presented; in
Section V the experiments and results are showed,
a discussion of this results is presented, and also a
statistical analysis is performed; finally in Section
VI are presented the conclusions and future work.

2 The Clustering Problem

According to Mirkin (Mirkin, 2012), clustering is
a discipline dedicated to reveal and describe the
structures of groups in a dataset and may define
four important involved concepts: data, structure
groups, reveal a group structure, and describe a
group structure. The following definitions were
taken from (Maulik and Bandyopadhyay, 2000;
De Falco et al., 2007; Karaboga and Ozturk, 2011;
Senthilnath et al., 2011).

Suppose S = {x1, x2, . . . xn} is a set of N -
dimensional n points and C = {c1, c2, . . . , c

k

} is
a set of N -dimensional k elements. The clustering
problem in a N -dimensional space RN consists in
partitioning the set S in a number k of clusters
based on a similarity metric, where each cluster
has as center an element c

i

from C.
Suppose that G

i

, i = 1, . . . , k, represents a
cluster, then the following properties hold:

• G
i

6= �, to i = 1, . . . , k;

• G
i

\ G
j

= �, to i, j = 1, . . . , k, such that
i 6= j;

•
kS

i=1
G

i

= S

The clustering metric that has been adopted in
this work is the sum of the Euclidean distances of
the points of a group to their respective center. The
definition of this clustering metric M for k clus-
ters G1, G2, . . . , G

k

, is given by the following ex-
pression:

M(G1, G2, . . . , G
k

) =

kX

i=1

X

xj2Gi

kx
j

� c
i

k

3 Algorithm Based on the Social
Behavior of Spiders

Cuevas et al. (2013) proposed a new optimiza-
tion algorithm, called Social Spider Optimiza-
tion(SSO), the development of this new algorithm
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was guided by the operational principle of the so-
cial behavior of spiders. The SSO algorithm as-
sumes that the solution space is a community net-
work (spider web), where spiders interact to each
others. The main features of this approach are:

• Each solution within a space of solutions rep-
resents the position of a spider in the commu-
nity network.

• Each spider receives a weight according to
the value of fitness solution that represents.

• The algorithm modeled two types of search
agents (spiders): male and female. Depend-
ing on the genre each individual performs dif-
ferent types of operations that simulate their
social behavior within the colony.

An important feature of the colonies of social
spiders is that they have a high number of female
agents. This fact is simulated by defining the num-
ber of females N

f

randomly within the range of 65
to 90% of N , which is the number of elements of
the total population. The number of males N

m

is
calculated as the complement of N

f

regarding N .
The total population S is divided into two sub-

groups F and M . The group F is the set of female
spiders, and the group M is the set of male spiders.

F = {f1, f2, . . . , fNf }

M = {m1,m2, . . . ,mNm}

where S = F [M = {s1, s2, . . . , sN}

3.1 Calculation of Fitness
Each individual (spider) i of the population S re-
ceives a w

i

weight, that represents the quality of its
solution. This weight can be calculated as follows:

w
i

=
J(s

i

)� worst
s

best
s

� worst
s

where J(s
i

) is the fitness value calculated by eval-
uating the position of a spider s

i

regarding the
function J . The values worst

s

and best
s

consid-
ering a maximization problem, are defined as fol-
lows:

best
s

= max(J(s
k

)), k 2 {1, 2, . . . , N}

worst
s

= min(J(s
k

)), k 2 {1, 2, . . . , N}

3.2 Modeling of Vibrations Through the
Community Network

The community network is used as a mechanism
for transmitting information between the members
of the colony. This information is coded as small
vibrations that are critical for collective coordina-
tion of all individuals. The vibrations are based on
the weight and the distance of the spider that gen-
erated it. The vibrations that are perceived by an
individual i as a result of information transmitted
by an individual j are modeled by the following
expression:

V ib
i,j

= w
j

⇤ e�d

2
i,j

Where d
i,j

is the euclidean distance between
spiders i and j. There are three special types of vi-
brations that are considered in the SSO algorithm:

• V ib
i,c

vibrations, where c is the closest
member to i that has a higher weight com-
pared to i (w

c

> w
i

).

• V ib
i,b

vibrations, where b is the individual
who has the best weight (best fitness value)
of the whole population S.

• V ib
i,f

vibrations, where f is the female in-
dividual closest to i.

3.3 Initialization of Population
The SSO algorithm starts by initializing the set S,
which contains N spiders positions. Each posi-
tion f

i

or m
i

, is an n-dimensional vector contain-
ing the values to be optimized. These values are
distributed uniformly between the values, plow and
phigh, which are previously specified.

3.4 Cooperative Operators
3.4.1 Cooperative Operator for female

spiders
To emulate the cooperative behavior of the female
spiders, a new operator is defined. The operator
considers the change in position of a female spider
i at each iteration, this change can be attractive
or repulsive and is calculated by combining three
elements:

• The first element considers the change re-
garding the nearest member to i that has
the highest weight and produces vibration
V ib

i,c

;
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• The second element considers the change re-
garding the best individual of the population
S that produces vibration V ib

i,b

;

• The third incorporates a random movement.

The last three elements can be considered as one
movement, we use the ”+” symbol for attraction
and the ”-” symbol for repulsion. The change in
position can be calculated as follows:

fk+1
i

= fk

i

±movement

where k represents the iteration number.

3.4.2 Cooperative Operator for male spiders
To emulate the cooperative behavior of the male
spiders, these are divided into two groups: dom-
inant D and non-dominant ND. This division
is made according to its position respect to the
median of all male individuals. Individuals who
have a weight that is above the median are con-
sidered dominants, otherwise they are considered
non-dominant.

For dominant males are defined two move-
ments: (a) a movement of attraction to the near-
est female f that produces a vibration V ib

i,f

, and
(b) a random movement. The last two movements
can be considered as one, and then the change in a
dominant male can be calculated as follows:

mk+1
i

= mk

i

+ D movement

where k represents the iteration number.
For non-dominant males is defined just one

movement of attraction to the weighted average of
male spiders. Then the change in a non-dominant
can be calculated as follows:

mk+1
i

= mk

i

+ ND movement

where k represents the iteration number.

3.5 Mating operator
Mating a colony of spiders is made between fe-
males and dominant males. So when a dominant
male m

g

finds a set of female spiders Eg within
a range of mating r, it mates, forming a new off-
spring S

new

. This new offspring is generated from
the set T g, which is formed by the union of Eg and
m

g

. When the set T g is empty, mating operation
is canceled.

The weight of each spider that is involved in
the mating process, i.e. spiders from the set T g,

defines a probability of influence on the new off-
spring. The probability of influence P

si is as-
signed using the roulette-wheel selection, which
is defined as follows:

P
si =

w
iP

j2T g w
j

where s
i

2 T g.
A spider is a solution within the solution space,

so a new spider is formed by choosing values for
each variable, this variable is chosen within the
values defined by the method of roulette. For ex-
ample let s

new

= {v1, v2, . . . , vn} be the new
spider, each variable v

i

is determined using the
method of roulette-wheel selection.

Once a new spider s
new

was formed is com-
pared with the worst spider s

worst

from the colony
according to their weights, where w

worst

=
min

l2{1,2,...,N}(wl

). If the new spider s
new

is bet-
ter than the worst spider s

worst

, then s
worst

is re-
placed by s

new

. Otherwise, the new spider is dis-
carded and the colony does not suffer alterations.
If a replacement occur, the new spider takes the
genre and index from the spider replaced.

4 Optimization Algorithm Based on
Social Behaviour Spiders for
Clustering Problems

As proposal we present an SSO (Cuevas et al.,
2013) approach to solve the clustering problem.
This optimization algorithm based on the social
behaviour of spiders is a meta-heuristic algorithm
of general purpose, so it is necessary to modify
many elements of the algorithms such as the rep-
resentation of the individuals, calculation of the
fitness function, etc. Below are presented the el-
ements on which it was necessary to make mod-
ifications to the original algorithm proposed in
(Cuevas et al., 2013).

4.1 Representations of Spiders (Individuals)
The first consideration to take into account is the
representation of each spider. Each spider (male
or female) represents a set of k clusters centers,
which is a feasible solution to the problem of clus-
tering.

For instance, let x =
{(10.5; 20.4), (15.2; 25.0)} be a spider
that contains k = 2 cluster centers that are
{(10.5; 20.4) and (15.2; 25.0)}, in this particular
case each center has dimension n = 2.
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Each spider of the initial population was gen-
erated taking k random points of a given dataset,
where k is the number of cluster to be found.

4.2 Distance between Two Spiders
It is necessary to define the distance between two
spiders, since a spider is formed by a set of cluster
centers (each center formed by several points) and
not by a set of points. So we define the distance
between two spiders as the sum of the euclidean
distances between their centers of clusters.

For instance, let a = {(a
x1 ; ay1), (ax2 ; ay2)}

and b = {(bx1; by1), (bx2 ; by2)} be two spiders
that have k = 2 clusters centers, with each center
having dimension 2. Then the distance between
these two spiders will be:

d
a,b

= d((a
x1 ; ay1), (bx1 ; by1)) +

d((a
x2 ; ay2), (bx2 ; by2))

where d((a
x1 ; a

y1), (b
x1 ; b

y1)) is the Euclidean
distance between the centers (a

x1 ; a
y1) and

(b
x1 ; by1).

4.3 Fitness and Weight of a Spider
The fitness of each spider, which is an indicator
of how good is the solution that this spider repre-
sents, is calculated using the metric M. The aim
of the SSO algorithm is to minimize the fitness of
the population. Thus, a spider that has the mini-
mum fitness is the best within the population.

The pseudocode for calculating the fitness of a
spider is presented in Algorithm 1. The weight of a
spider i was re-defined, because fitness and weight
have negative correlation, and it is calculated in
the following way:

w
i

=
worst

s

� J(s
i

)

worst
s

� best
s

bests = min( J(sk) ), k 2 {1, 2, . . . , N}

worsts = max( J(sk) ), k 2 {1, 2, . . . , N}

where J(s
i

) is the fitness value of the spider i
that was calculated using Algorithm 1.

4.4 Mating of Spiders
In the mating stage was defined a mating set T
which is formed by a dominant male spider and the
female spiders that are within its range of mating.
From this set T are created new spiders, a new spi-
der represents a set of cluster centers, where each
cluster center is inherited from a spider within the

Algorithm 1: Algorithm for calculating the
fitness of a spider

Input: An array of cluster centers C (spider
C); a set D of n-dimensional m
points; an integer k > 0 that
represents the number of clusters

Output: Metric M of spider C
1 Create the set of empty clusters
G = {G1, G2, . . . , G

k

}
2 foreach point x of the set D do
3 Assign the point x to the cluster G

i

whose
center C

i

is the nearest to x;

4 foreach cluster G
i

do
5 calculate a new center C⇤

i

;

6 Calculate the metric M for the set of clusters
G as defined in Section 2;

set T . In order to define the spider from which the
new spider will inherit a cluster center, it is used
the roulette-wheel selection.

4.5 Substitution of Spiders
In order to decide which spiders will be replaced
by the new spiders produced in the mating stage,
also is used the roulette wheel selection method,
where spiders of the population with less weight
(greater fitness) have more probability to be re-
placed. It is important to note that the weight of
a spider have a negative correlation with respect
to its fitness value, since we are working with a
minimization problem and not with a maximiza-
tion problem as originally proposed by (Cuevas et
al., 2013).

The pseudocode of our proposal is showed in
Algorithm 2.

5 Experiments and Results

To compare the algorithms were taken five dataset
from UCI (UCI Machine Learning Repository)
repository: Balance, Cancer-Int, Dermatology, Di-
abetes, Iris.

The Balance dataset was generated to model
psychological experiments, each example is clas-
sified as having the balance scale tip to the right,
tip to the left, or be balanced. The attributes are the
left weight, the left distance, the right weight, and
the right distance. The correct way to find the class
is the greater of (left-distance * left-weight) and
(right-distance * right-weight). If they are equal,
it is balanced.
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Algorithm 2: Social Spider Optimization al-
gorithm for the clustering problem
Input: A dataset D of n-dimensional m

points; an integer k > 0 that
represents the number of clusters

Output: Metric M of the clusters found
1 foreach spider C of population P do
2 Choose randomly k points from dataset D

and create the array C (spider C) of
cluster centers;

3 Calculate fitness of population P ;
4 Calculate weight of population P ;
5 for i = 2 to numberGenerations do
6 Cooperative operator for female spiders;
7 Cooperative operator for male spiders;
8 Mating operator;
9 Replacement of spiders in P ;

10 Calculate fitness of population P ;
11 Calculate weight of population P ;

12 Return fitness (metric M) of the best solution
found;

The Cancer-int dataset is one of three domains
provided by the Oncology Institute that has repeat-
edly appeared in the machine learning literature.
This data set includes 201 instances of one class
and 85 instances of another class.

In the Dermatology dataset is shown diagnoses
of erythemato-squamos diseases.

Diabetes patient records were obtained from
two sources: an automatic electronic recording de-
vice and paper records. The automatic device had
an internal clock to timestamp events, whereas the
paper records only provided ”logical time” slots
(breakfast, lunch, dinner, bedtime).

Finally Iris contains 3 classes of 50 instances
each, where each class refers to a type of iris plant.
One class is linearly separable from the other 2;
the latter are NOT linearly separable from each
other.

More features about the datasets are shown in
the Table 1.

For the experiments the number of generations
was fixed at 100 for the three algorithms (K-
means, GA, SSO). For the case of GA and SSO
algorithms the number of elements of their respec-
tive population was fixed at 100.

The experiments were performed as follows:
for each dataset, the three algorithms (K-means,

Table 1: Properties of datasets
Dataset Size Attributes Classes
Balance 625 4 3

Cancer-Int 699 9 2
Dermatology 366 34 6

Diabetes 768 8 2
Iris 150 4 3

GA, SSO) were executed 50 times . Each execu-
tion of an algorithm returns the metric M of the
best solution found. Then, the following measures
were calculated: average, median, minimum and
maximum value of the results.

The results of the experiments for each dataset
are shown in tables 2, 3, 4, 5, and 6 where the best
results are highlighted in bold.

Table 2: Results of the experiments for the dataset
Balance

K-means Genetic. Alg. SSO Alg.
Mean 1426,544 1423,860 1423,851

Median 1425,804 1423,851 1423,851
Minimum 1423,851 1423,851 1423,851
Maximum 1442,669 1424,071 1423,851

Table 3: Results of the experiments for the dataset
Cancer-Int

K-means Genetic Alg. SSO Alg.
Mean 2824,135 2820,319 2820,302

Median 2824,136 2820,302 2820,302
Minimum 2824,136 2820,302 2820,302
Maximum 2824,136 2821,138 2820,302

5.1 Discussion
In the experiments for the dataset Balance, see Ta-
ble 2, we can see that SSO algorithm has the best
results respect to all measures. Furthermore, re-
spect to the median and minimum values the SSO
algorithm has the same values as the GA.

From the results for the dataset Cancer-int,
shown in Table 3, we can see that SSO algorithm
has the best results respect to all measures. Fur-
thermore, respect to the median and minimum val-
ues the SSO algorithm has the same results as the
GA.

In the case of Dermatology dataset, shown in
Table 4, GA algorithm has the best results respect
to all measures. Furthermore, respect to the me-
dian and minimum values the SSO algorithm has
the same results as the GA this result is similar as
the two previous experiments.
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Table 4: Results of the experiments for the dataset
Dermatology

K-means Genetic Alg. SSO Alg.
Mean 1127,390 1092,353 1092,355

Median 1121,087 1092,341 1092,356
Minimum 1092,644 1092,341 1092,341
Maximum 1415,274 1092,373 1092,373

Table 5: Results of the experiments for the dataset
Diabetes

K-means Genetic Alg. SSO Alg.
Mean 52072,244 49160,016 49159,956

Median 52072,243 49160,214 49159,939
Minimum 52072,244 49157,441 49157,441
Maximum 52072,244 49161,999 49165,111

In the Table 5, we can see results of Diabetes
dataset, the results shown that SSO algorithm has
the best results respect to all measures. And, re-
spect to the minimum values the SSO algorithm
has the same results as the GA.

Finally in the results for the Iris dataset, shown
in Table 6, SSO algorithm has the best results re-
spect to all measures too. Furthermore, respect
to the median and minimum values the SSO al-
gorithm has the same results as the GA.

5.2 Statistical Analysis
An additional statistical analysis was performed
for comparing the algorithms, since we are work-
ing with stochastic algorithms.

The following methodology was used: first the
Kolmogorov-Smirnov test was applied to deter-
mine whether results (of 50 executions) of each
algorithm have a normal distribution. After deter-
mining that the algorithms do not have normal dis-
tribution the non parametric Wilcoxon rank sum
test was applied to compare the medians of two
algorithms. This methodology was discussed and
applied in others works (Demšar, 2006), (Durillo
et al., 2009), (Muñoz et al., 2011).

The Wilcoxon rank sum test is used to test the
null hypothesis (H0) that the samples (of 50 ex-
ecutions) of two algorithms come from distribu-
tions with same medians. If the null hypothesis
is rejected the alternative hypothesis is assumed
(H

A

) that the samples come from distributions
with different medians.

A significance level of 5% (p � value less or
equal than 0.05) was used for the Wilcoxon rank
sum test. If the test is successful then the null
hypothesis is rejected and the alternative hypothe-
sis is assumed, this result is shown using the ’s+’
symbol. Otherwise p� value is greater than 0.05

Table 6: Results of the experiments for the dataset
Iris

K-means Genetic Alg. SSO Alg.
Mean 102.495 97.223 97.222

Median 97.326 97.222 97.222
Minimum 97.326 97.222 97.222
Maximum 124.182 97.232 97.222

and the null hypothesis is assumed, this results is
shown using the symbol ’s-’.

In the table 7 are shown the results of the sta-
tistical test of Wilcoxon between the SSO and K-
means clustering algorithms. In this table we can
see that there is statistical difference between SSO
and K-means algorithms for all cases. So we can
conclude that the SSO algorithm presents results
significantly better than K-means algorithm.

Table 7: Results of the Wilcoxon rank sum test
between the SSO algorithm and the K-means al-
gorithm

Dataset SSO Alg. K-means
(median) (median)

Balance 1423,851 1425,804 s+
Cancer-Int 2820,302 2824,136 s+

Dermatology 1092,356 1121,086 s+
Diabetes 49159,939 52072,244 s+

Iris 97,222 97,326 s+

In the table 8 is shown the result of the statis-
tical test of Wilcoxon between the SSO and the
GA. In this table we can see that for most cases
the SSO and GA algorithms have similar results.
Only in the case of Iris dataset exists statistical
significance, but we can not conclude that an al-
gorithm is better than another since they have the
same median, we can only say that the algorithms
have different behavior.

Table 8: Results of the Wilcoxon rank sum test
between the SSO algorithm and the genetic algo-
rithm

Dataset SSO Alg. GA
(median) (median)

Balance 1423,851 1423,851 s-
Cancer-Int 2820,302 2820,302 s-

Dermatology 1092,356 1092,341 s-
Diabetes 49159,939 49160,214 s-

Iris 97,222 97,222 s+

6 Conclusions and Future Work

In this work, a SSO approach for the cluster-
ing problem has been proposed. For evaluat-
ing its performance experiments were performed
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over 5 datasets from the UCI repository (Balance,
Cancer-Int, Dermatology, Diabetes, and Iris), also
comparisons were performed with two classic ap-
proaches for the clustering problem: the k-means
algorithm and a genetic algorithm for clustering.

The experiments showed that the SSO algo-
rithm has better results regarding the algorithm k-
means, and regarding the genetic algorithm, the
SSO algorithm has equally competitive results.
All these results were validated statistically using
the non-parametric Wilcoxon rank sum test. Thus,
the main contribution of this work was to show
that the SSO algorithm can produce competitive
results when compared with classic algorithms.

As future works, we will include comparisons
with newer algorithms of the literature. Also, it
is interesting to include in the experiments bigger
datasets. Finally, additional experiments will be
performed using other metrics such as the Clas-
sification Error Percentage used in others works:
(De Falco et al., 2007), (Karaboga and Ozturk,
2011) and (Senthilnath et al., 2011).
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Juan J Durillo, José Garcı́a-Nieto, Antonio J Nebro,
Carlos A Coello Coello, Francisco Luna, and En-
rique Alba. 2009. Multi-objective particle swarm
optimizers: An experimental comparison. In Evo-
lutionary Multi-Criterion Optimization, pages 495–
509. Springer.

John H Holland. 1975. Adaptation in natural and ar-
tificial systems: An introductory analysis with ap-
plications to biology, control, and artificial intelli-
gence. U Michigan Press.

Anil K Jain, M Narasimha Murty, and Patrick J Flynn.
1999. Data clustering: a review. ACM computing
surveys (CSUR), 31(3):264–323.

Dervis Karaboga and Celal Ozturk. 2011. A novel
clustering approach: Artificial bee colony (abc) al-
gorithm. Applied Soft Computing, 11(1):652–657.

S. Lloyd. 1982. Least squares quantization in
pcm. Information Theory, IEEE Transactions on,
28(2):129–137, Mar.

Ujjwal Maulik and Sanghamitra Bandyopadhyay.
2000. Genetic algorithm-based clustering tech-
nique. Pattern Recognition, 33(9):1455 – 1465.

Boris Mirkin. 2012. Clustering: a data recovery ap-
proach. CRC Press.
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