
DAZIO: Detecting Activity Zones based on Input/Output call and SMS
activity
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Abstract

Mobile telecoms operators possess an
enormous quantity of data, which could be
used to reduce the cost of installing new
infrastructure, to provide a better QoS or
to plan their infrastructure. Thus, they are
concerned to model, understand and pre-
dict SMS and calls activity levels in their
infrastructures. Besides, SMS and call
activities analysis can open new business
opportunities for geomarketing as well as
trade area analysis. In the present effort,
we detected activity zones with a differ-
ence of only 0.5 km from the reference
activity areas extracted from Geo-tweets.
We also used Markov chains to represent
and predict SMS and call activity lev-
els, achieving a prediction success rate be-
tween 80% and 90%.

1 INTRODUCTION

Telecoms data is a rich information source for
many purposes, ranging from urban planning
(Toole et al., 2012), human mobility patterns
(Ficek and Kencl, 2012; Gambs et al., 2011),
points of interest detection (Vieira et al., 2010),
epidemic spread modeling (Lima et al., 2013),
community detection (Morales et al., 2013), disas-
ter planning (Pulse, 2013) and social interactions
(Eagle et al., 2013).
One common effort for these applications is to de-
termine dense areas where many users stay for a
significant amount of time, namely activity zones.
Another task is to identify contiguous zones relay-
ing activity zones (i.e., transit zones). Thus, in our
context, the detection of activity and transit zones
as well as the interaction between identified ac-
tivity zones are crucial tasks for reducing the cost

of installing new infrastructure, to provide a better
QoS or to plan their infrastructure.
Therefore, in the present paper, we will identify
activity and transit zones to monitor and to predict
the activity levels in the telecoms operators net-
work. These monitoring and prediction are based
on the SMS and calls input/output activity levels
issued from the Telecoms Italia Big Data Chal-
lenge1. The results of the present study is directly
applied for: (1) targeting advertisement to activ-
ity zones; (2) proposing a suitable place to open a
new store in a city or (3) planning where to add
cell towers to improve QoS.
In the present effort, we describe a methodology to
detect activity and transit zones. More precisely,
the contribution of this work is twofold. On one
hand, we present an Activity Markov chain model
to represent activity levels. On the other hand, we
predict future activity levels using the aforemen-
tioned model. The rest of the paper is organized
as follows. First, Section 2 describes the related
works on activity zones detection. Then, Section
3 presents the datasets we use for experiments.
Next, Section 4 introduces our technique to detect
and model activity zones as well as the approach
to forecast activity levels. Section 5 shows corre-
lation measurements of activity levels versus pol-
lution and weather conditions. Finally, Section 6
concludes the paper and depicts some future direc-
tions.

2 RELATED WORK

Dense areas detection has been studied from a
human mobility point of view, using fine grain
and coarse-grained location data. As an example
of fine-grained location, the work of (Gambs et
al., 2011) use mobility traces of 172 Yellow Cabs

1Telecoms Italia Big Data Challenge web-
site: www.telecomitalia.com/tit/en/
bigdatachallenge.html
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Taxis, issued from GPS, in San Francisco Bay (Pi-
orkowski et al., 2009) to detect taxi’s point of in-
terests (POI). These POIs are equivalent to activity
zones, which tend to be zones with high pedes-
trian presence. The authors rely on the begin-
end heuristic (Gambs et al., 2010) and cluster-
ing algorithms, such as Density Joinable (Zhou et
al., 2004), Density Time (Hariharan and Toyama,
2004) and Time Density clustering (Gambs et al.,
2010) to detect POIs in San Francisco city. An-
other fine-grain data used to detect activity areas
are issued from Geo-social networks.

The work of (Qu and Zhang, 2013) uses
Foursquare’s check-ins from 446 users during ten
months for identifying trade areas. They rely on
four different techniques like Center of Mass lo-
cation, the most commonly checked-in location,
the place with the highest check-in density and
the center of mass of the most frequently visited
location cluster. The algorithm use for cluster-
ing is DBSCAN (Ester et al., 1996). Once they
have identified the activity centers, they mark the
boundary of the area using drive-time/distance
polygon (Kures and Pinkovitz, 2011). This tech-
nique consists of computing the decay distance
from a given store to home or work (authors as-
sume that the two most checked-in places are
home and work). The drawback of this approach
is that the selected users are conditioned to check-
in in the store under study. Thus, the dataset is
biased.

Other works use coarse grain location from Call
Data Records (CDR). For instance, the work of
(Isaacman et al., 2011) uses Hartigan’s leader clus-
tering algorithm (Hartigan, 1975) to identify dense
areas. First, authors sort antennas by the amount
of time that phones contact the antenna. Once data
is sorted, the clustering algorithm takes the first
antenna as the centroid of a cluster. Then, it veri-
fies if the next antenna is within a distance d from
the centroid. If it is not the case, the antenna be-
comes the centroid of a new cluster. In the case
the antenna is within the distance, the algorithm
computes the new centroid as the weighted aver-
age. They repeat the process until all antennas be-
long to a cluster. Researchers use CDR locations
of 97 and 71 thousand unique users in Los An-
geles and New York cities collected over 2 and a
half months as well as 19 volunteers as the ground
truth to validate their results. They were able to
estimate dense areas with an error of 3 miles com-

pared to the ground truth.
Another, more refined technique to identify dense
areas respecting natural tessellation is presented
by (Vieira et al., 2010). Authors use CDR loca-
tions from calls of one million users during four
months over an area of 80 000 km2. They propose
a method composed of three phases: the first step
is the graph construction, which relies on Delau-
nay triangulation (Dobkin and Laszlo, 1987). The
triangulation algorithm makes connexions (edges)
between near antennas (vertex) maximizing the
size of the angles of the triangles. Once the graph
is built, all edges are weighted by the total activ-
ity and by the number of users of both connected
antennas. The second phase is the computation of
dense areas based on a maximum spanning tree
build using the Kruskal algorithm (Kruskal, 1956).
Taking as input the weighted graph G, the idea
behind this algorithm is to find a subgraph of G,
which maximizes the density and does not con-
tain any cycle. At last, the post-processing phase
uses (Shiloach and Vishkin, 1982) algorithm to es-
tablish groups of antennas representing dense ar-
eas. Thus, the algorithm groups adjacent vertex
from previously computed sub-graph to find a set
of close vertex (a set of antennas). The authors val-
idate their results empirically based on the subway
structure of the region under study. Inspired by
these works, we propose a novel ad-hoc method-
ology to find activity (dense) zones as well as to
model and forecast their activity levels using the
data provided by the Telecom Italia Big Data Chal-
lenge (TIM challenge). We describe this dataset in
the next section.

3 DATASET

Datasets provided by the TIM challenge were
collected in the cities of Milan and Trento over
November and December 2013. Our study only
takes into account the dataset gathered from Milan
city. Nevertheless, all the analysis and the method-
ology could be generalized for any city. In the next
subsections, we will describe the datasets provided
for Milan city. These datasets were used to detect
and model the activity zones (primary datasets)
and to find some correlation between activity and
other measures like air quality and weather condi-
tions (auxiliary datasets). It should be noted that
space was discretized in a grid, and all measures
are normalized to correspond in one square of the
grid.
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3.1 Main datasets
The datasets of Milan city we use to detect and
model the activity zones are:

Milan Grid is a geographical segmentation over
the city to aggregate the measurements of the
other datasets. The area of each square is
55 225 m2, and it has 10 000 squares in the
form of a point (x, y) and the latitude and
longitude belonging to this x, y position. An
example of the described data as well as the
grid over Milan are introduced in Table 1 and
Figure 1, respectively.

Point Latitude Longitude
x1, y1 9.011 45.568

Table 1: Example of the Milan grid data

Figure 1: Milan grid

Telecommunications (SMS, Call and Internet)
provides information about the activity of a
square concerning received and sent SMS,
incoming and outcoming calls as well as
internet usage. This data is temporal ag-
gregated in timeslots of ten minutes and
provides the measure of the activity of a
given event as well as the square id (c.f. Table
2). This kind of information is organized in a
way that SMS-in and SMS-out activity scale
are given in arbitrary units, and their values
range from 0 to 1.

Id Time Country SMS-in
1 1383265200 39 0.24

SMS-out Call-in Call-out Data
0.16 0.108 0.026 6.83

Table 2: Example of activity data in Milan

Private Transportation (Cobra Telematics)
gives information about the private mobility
in Milan city by measuring the speed, the

number of vehicles that belongs to Milan, the
number of vehicles that is not from Milan,
the number vehicles with engine ignition
systems, in movement and stopped (c.f.
Table 3).

Id Time Direction
60 17/12/13 18:00 WEST

Avg speed Std speed Mi plates
24 95 21

Non-Mi plates Ignition Mov/Stopped
62 2 2/0

Table 3: Example of private mobility data in Milan

3.2 Auxiliary datasets
We also used additional datasets to analyze activ-
ity zones, dynamics, and correlations, as we show
in the following paragraphs.

Telecommunications - MI to MI provides infor-
mation regarding the directional interaction
strength, between the city of Milan and dif-
ferent areas based on the calls exchanged be-
tween Telecom Italia Mobile users. More
precisely, this dataset contains the origin and
destination Id squares, the time and the direc-
tional interaction strength i.e., Activity (c.f.
Table 4)

Id 1 Id 2 Time Activity
1 3 1383345474 0.24

Table 4: Example of activity data between Milan zones

Precipitation describes the intensity and the pre-
cipitation type over the city of Milan. In
more detail, the dataset uses a coarse spa-
tial aggregation by dividing Milan city into
four quadrants (northeast, northwest, south-
east and southwest). The intensity value of
the phenomenon is between 0 and 3, the per-
cent of coverage of a given quadrant and the
precipitation type between 0 and 2, where 0
means absence of precipitation, 1 is rain and
3 is snow (c.f. Table 5).

Time Id Intensity Coverage Type
201311060220 1 1 45 1
201311060220 2 0 0 0
201311060220 3 0 0 0
201311060220 4 2 78 1

Table 5: Example of activity data between Milan zones
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Air Quality describes the air pollution monitor-
ing system of Milan city obtained by us-
ing various types of sensors located within
the city limits. This environmental dataset
measures a different kind of contamination
agents, such as Ammonia, Nitrogen Dioxide,
Total Nitrogen, Particulate Matter 2.5 µm
(PM2.5), Particulate Matter 10 µm (PM10),
Benzene, Sulphur Dioxide, Black Carbon,
Carbon Monoxide and Ozone. An exam-
ple of pollution measure is given in Table
6, where the characteristics of this particular
sensor are in Table 7.

Sensor id Time Measure
5823 2013/12/30 04:00 1.9

Table 6: Example of air quality measure

Sensor id Lat/Lon Pollution
5823 45.24/9.27 Carbon Monoxide

Table 7: Description of the sensor 5823

Social Pulse contains data derived from an analy-
sis of geolocalized tweets originated in Mi-
lan. This dataset provides a user id, DB-
Pedia entity, tweets language, municipality,
time, timestamp and location (c.f. Table 8).

User Entities Language
5fa4b1cc71 Halloween En

Municipality Timestamp Lat, Lon
Milan 1383260474 9.21, 45.49

Table 8: Example of Social Pulse data

Based on the aforementioned datasets, we have
implemented our experiments using the main and
the auxiliary datasets. These experiments are de-
tailed in sections 4 and 5, respectively.

4 EXPERIMENTS
In the present section, we describe our methodol-
ogy to discover, model and predict the behavior
of a zone. We distinguish two different areas, the
activity zone, where people stay on a regular ba-
sis for a significant amount of time and the transit
zone which is the area used by individuals to go
from one activity zone to another. In the next sub-
sections, we describe how to recognize an activity
zone from a transit zone (Subsection 4.1), how to
model activity levels (Subsection 4.2) and finally
how to predict them (Subsection 4.3).

4.1 Detecting activity levels
The basic idea behind this method is to have a
good representation of the activity variation levels
over the time. Activity levels could be classified
in three different degrees, low, medium and high.
Cumulative distribution of incoming/outcoming
SMS and call activity levels illustrated by a Heat
map over Milan city, as shown in Figure 2, were
used to analyze data. The objective is to, empir-
ically, find a suitable threshold to distinguish a
square with high activity level from a square with
medium or low activity levels represented as green
and red in Figure 3, respectively.

Figure 2: Milan activity heat map

Figure 3 depicts the cumulative distribution of
the aggregated incoming and outcoming SMS and
call activity of the telecommunications dataset (c.f.
Subsection 3.1). The Heat map is built for an ac-
tivity threshold of 25 units. Based on this visual-
ization technique, that amount of units seems to
be a good trade-off between compact and well-
separated activity zones. Heat maps were used
to represent represent tourist activity as shown by
Olteanu et al. (Olteanu et al., 2011).

In order to detect groups of squares representing
an activity zone, we can use a high activity thresh-
old (c.f. Subsection 4.2). In addition, we study, in
detail, the activity over work hours to analyze the
difference between busy and idle squares. Figure
4 shows the difference in activity levels between
activity and transit zones. From 8 AM to 8 PM the
activity is considerably high, that is why that area
is composed of a vast number of squares during
the day. On the other hand, transit zones display a
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Figure 3: Cumulative distribution of the sms/call activity with
heat maps

much lower activity level and a higher fluctuation
throughout the day.

Figure 4: Activity over time in workdays between 8AM-
8PM. Activity zone (left) and transit zone (right)

Taking into account the elements as mentioned
earlier, we use the Heat map and activity threshold
presented in Figure 3 for detecting high activity
zones. Nevertheless, we need to define the borders
of these activity zones. From Figure 4, we can in-
fer that this irregularity of transit zone represents
movement. Thus, the Cobra dataset gathers the
information about the movement of vehicles and
we depicted this information in a Heat map over
Milan city in Figure 5. The speed combined with
the activity level allowed us to detect the activity
zones, as well as their borders. As the result of
the combination of this two variables, we obtained
28 activity areas and the centroids of these activity
zones which are shown in Figure 6 in blue color.
Since we do not have the ground truth, we used the

Figure 5: Vehicles speed heat map based on Cobra dataset

Figure 6: Centroids of the activity zones in Milan city (blue),
centroid of the clusters from Geo tweets (green) and com-
modities issued from Foursquares check-ins shops (red) and
restaurants (purple).

geolocalized tweets dataset to verify the accuracy
of our methodology. Applying DBSCAN (Ester
et al., 1996) clustering algorithm with at least 5
points per cluster within a radius of 3 km over
8 282 users (i.e.,109 762 geolocalized tweets). We
obtained 24 clusters depicted as green points in
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Figure 6. Thus, some groups are close to the iden-
tified activity zones in the northeast and south. In
Northwestern, activity zones are represented by
only one cluster due to the proximity of geolocal-
ized tweets and the approach of DBSCAN to build
clusters. The Downtown area has many clusters
due to commodities concentration. To verify this
fact, we have included two categories of check-ins
from Foursquare, like shops (red) and restaurants
(purple). One thing that surprised us was the de-
tection of a large group of geolocated tweets in
the southern outskirts of Milans grid. Using these
data we found that the distance between the cen-
troids of the clusters and activity zones is 0.5 km
closer. These results validated the accuracy of our
heuristic method to find activity zones. Finally, we
present the centroid of the detected activity zones
in Figure 7. These regions are used in the next
subsection for predicting purpose.

Figure 7: Centroids of the activity zones in Milan.

Up to this point, we are able to identify activity
zones. Thus, the next tasks are to model the behav-
ior activity levels in the detected regions as well as
to predict the activity levels in the identified activ-
ity zones.

4.2 Modeling activity levels
Relying on the thresholds mentioned above, we
can build an Activity Markov chains model to rep-
resent the change of activity levels over time. An
Activity Markov chain model is a stochastic pro-
cess where the changes of states are related to a
probability associated with various state changes

(transition probabilities). In our case, an Activ-
ity Markov chain is a probabilistic automaton (PA)
model that represents, in a compact way, the occu-
pation (activity) of a square or activity zone. The
nodes symbolize the state (low, medium or high)
of the squares or zones ([activity level] [zone
code], ex: L A) and edges, weighted with a prob-
ability, represent the transition from one state to
another over time windows. This model could be
expressed in the form of a graph or the form of a
transition matrix (c.f. Figure 9).
The process for building an Activity Markov
model is divided into two stages. The first one
is basically to order the events in a chronological
way. Then we classify them as low, if they have
less than 15 activity units, as medium if activity
units are between 15 and 25 and as high if there
are more than 25 activity units. Then the transi-
tion matrix is built by counting the variations from
one level to another, taking care to avoid loops.
When events are not recorded anymore, the matrix
is normalized to obtain the transition probabilities.
As shown in Figure 8, we have divided the time
into 4 different windows depending on the range
of time studied, each one has 6 hours and starts
at 6:00 am; for both weekdays and weekends; giv-
ing a total number of eight windows. Furthermore,
in each time window interactions between differ-
ent levels of activity are also modeled. Moreover,
we matched, after a model processing, an activity
zone of a time window with another (blue arrows).
We finally conclude, from the stationary vector of
Markov chains, that activity areas are occupied in
only 11% and free in 71%. It is important to point
out that, for improving the accuracy of the anal-
ysis, it would be better to divide the time slots in
less intervals instead of 6 hours.
Until this point we showed that we are able to
identify high activity squares, activity and transit
zones. In the next subsections, we detail how to
predict, in an unprecedented way and with a very
acceptable rate of success, not only activity levels
but also their possible changes.

4.3 Prediction of activity levels

Anticipating high activity levels within an “ac-
tivity area” allows Telecoms operators to plan or
avoid unnecessary investment in infrastructure, as
well as ensure the QoS or to start a new en-
trepreneurship. In this paper, our prediction, in-
spired from the work of Gambs et al. (Gambs et
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Figure 8: Example of an activity Markov chain (activity over time windows)

al., 2012), is performed using the transition matrix
and allows us to obtain changes of activities be-
tween temporary windows and within them. Then,
predictions of activity changes within the same
window and estimations can be made. For exam-
ple, we wonder what is the probability of passing
from a low activity state to a high one or what is
the likelihood for a given activity to remain in the
same state when we consider the next window and
the same range of time. To answer these questions,
we rely on the algorithm presented in Algorithm 1.

Algorithm 1: Prediction algorithm
Data: TransitionMatrix, indexRow,

inTimeWindows
Result: indexColumn

1 if inTimeWindows then
2 //predict next state in the time windows
3 i=maxOutgoingProbOnWin(indexRow)
4 indexColumn = i
5 else
6 //predict the next state when the time

window change
7 i=maxOutgoingProbOnNextWin(indexRow)
8 indexColumn = i

9 return indexColumn

More precisely, Algorithm 1 takes as input a tran-
sition matrix (transitionMatrix). Where the index
of the row in the transition matrix corresponds to
the actual state of the system (indexRow) and a
boolean value is used to indicate whether the pre-
diction is local (inTimeWindows). Based on these

inputs, the algorithm returns the maximal outgo-
ing probability from the transition matrix taking
into account only columns corresponding to the
same time windows of the index row (local tran-
sition from line 1 to 4 of the Algorithm 1). For in-
stance, in Figure 8, if the actual state is medium on
the time windows from 18:00h to 0:00h on week-
days, the prediction algorithm will give an output
in the high level in the same time window. Another
kind of prediction is to take into account others
columns instead of those that belong to the same
time window (inter time windows transition from
line 6 to 8 of the Algorithm 1). Given the low in
the time windows from 18h to 0h on weekdays in
Figure 8, the algorithm will output the low state on
time windows from 0h to 6h on weekends. In the
case of the output we have the same probability,
ties are break randomly.

Figure 9: Transition matrix example. Where H=high,
M=medium, L=low, W=Weekday, We=Weekend and be-
gin end hours. As a way of example we show two temporary
windows framed with purple numbers inside.

To validate the accuracy of the predictions, we
used data from the whole month of November as
training set and the first 16 days of December as
testing set (we did not take into account New Year
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Figure 10: Success rate of prediction. Where local refers to
prediction inside a time windows and transition (trans) refers
to prediction over time windows.(#) means prediction value.

square zone
Local 0.86 0.7
Trans. 0.86 0.89

Table 9: Table summarizing results of Figure 10

celebration to avoid special dates that separate our
study from normal behavior). The results are de-
picted in Figure 10, where the success rate (Equa-
tion 1) is the ratio between the correct prediction
and the total number of predictions and the num-
ber of overall forecast. Note that the number of
predictions is indicated in parentheses at the bot-
tom part of each bar.

success rate =
#goodprediction

#predictions
(1)

We observe, from Table 9, the success rate for
both kinds of predictions, namely (1) within a
time window (local) and (2) in different time win-
dows (trans.). It is important to note that there
are two distinct scenarios; the first one considers
both local and trans. predictions based on Activity
Markov chains models which were built from ac-
tivity levels of squares; while the second scenario
takes into account activity levels from detected ac-
tivity zones to forecast future values. We did not
performed k-fold cross validation since the train-
ing set of a month is representative of the mobil-
ity pattern. Thus, adding more mobility traces to
the training test does not contribute to increase the
success rate.
So far, we are able to model, identify and predict
activity levels in activity zones. In the next section,

we are going to use the auxiliary datasets to ana-
lyze activity zones interaction and to study possi-
ble correlation with the levels or evaluate how the
weather impact the utilization of the Telecoms ser-
vice.

5 PLAYING WITH OTHER DATASETS

In the present section, we will study the interac-
tion between detected activity zones (Subsection
5.1); the correlation between activity levels versus
pollution measures (Subsection 5.2) and the influ-
ence of the weather on the activity levels in the
Telecoms operator infrastructure (Subsection 5.3).

5.1 Interaction between activity zones

Using the directional interaction activity dataset
between zones in the area of Milan, we plotted a
graph to visualize the communication exchange,
as well as various activity levels as we can appre-
ciate in Figure 11, where the width of the edges
accounts for the logarithm of the aggregated activ-
ity for the whole month of November. To extend
the semantic of this graph, we modulated the size
of the nodes according to the amount of tweets
emitted from the corresponding zone taking into
account global pulses dataset (c.f. Subsection 3.2).

Figure 11: Interaction graph of activity zones.

We observe that Milan city has a star topology,
where there is a central node that communicates
with the other peripheral nodes. Another interest-
ing fact is that small nodes tend to communicate
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to the central node. Nevertheless, there are a few
exchanges between small contiguous nodes.

5.2 Forecasting pollution through activity
In this subsection, we study the correlation be-
tween the activity level presented on the telecom-
munication dataset and air quality measurements
(both described in Subsection 3.2) to forecast the
pollution level of the Milan city based on the ac-
tivity of the telecom operator antennas. Figure 12
shows the results of the correlation of the activity
with respect to different polluting gasses as well
as the number of vehicles in movement, ignition
or stopped.

Figure 12: Correlation of the activity with pollution measures
and private mobility (Cobra).

We found out that the activity has a positive cor-
relation with PM10 (particulates matter with a di-
ameter of 10 microns or less) and PM2.5 pollution
measures (fine particles of 2.5 micrometers of di-
ameter or less). From Figure 13 we can visualize
that the activity levels has a positive correlation
with the radiation measures and a negative corre-
lation with the relative humidity.

5.3 Influence of weather on the activity
We compare the outgoing SMS and call activity
in the presence of different weather phenomena’s
scenarios, like rain, snow or the absence of both.
For this purpose, we used the Precipitation dataset
(c.f. Subsection 3.2).
From Figure 14, we can observe that people send
more SMS and give more calls in presence of rainy
weather, even if rain is slight (blue, red, yellow
and green bars) than in normal conditions (dark,

Figure 13: Correlation of the activity of a square with radia-
tion sensors.

Figure 14: Activity level of outgoing SMS and call.

red and light blue bars). Nevertheless, people tend
to call or send less SMS when it is snowing (dark
and light green bars).

6 CONCLUSION AND FUTURE
DIRECTIONS

Our purpose in this research is to understand the
activity of the telecommunication network by an-
alyzing several aspects of Milan’s phone traffic
flows. We were interested in the definition and
morphology of the activity and transit zones; the
prediction of activity levels over different regions
with a success rate between 80% and 90%; the in-
teractions between the different activity zones and
the influence of the weather and the pollution on
that activity. Thus, our results offer a new way of
looking at the telecommunication traffic data by
examining the various connections between appar-
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ently uncorrelated datasets, providing insights to
manage and to optimize the whole network. For
business opportunities, this means (1) new geo-
marketing opportunities through a better under-
standing of users communication patterns, (2) new
trade area analysis, (3) cheaper network load bal-
ancing as well as (4) improved QoS. In the future,
we would like to study and analyze in detail the
opinions (sentiment analysis) discussed by users
and generators of tweets and identifying the geo-
location of these activity areas. Another line of
investigation would include coarse mobility Call
Data Record (CDR) to take into account as an ad-
ditional element for detecting activity and traffic
areas.
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