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Abstract

Many real-world networks, such as the
Internet, social networks, biological net-
works are massive in size, which difficult
different processing and analysis tasks.
For this reason, it is necessary to apply
a sampling process to reduce the network
size without losing relevant network in-
formation. In this paper, we propose a
new and intuitive sampling method based
on exploiting the following centrality mea-
sures: degree, k-core, clustering, eccen-
tricity and structural holes. For our experi-
ments, we delete 30% and 50% of the ver-
tices from the original network and eval-
uate our proposal on six real-world net-
works on relational classification task us-
ing six different classifiers. Classification
results achieved on sampled graphs gener-
ated from our proposal are similar to those
obtained on the entire graphs. In most
cases, our proposal reduced the original
graphs by up to 50% of its original number
of edges. Moreover, the execution time for
learning step of the classifier is shorter on
the sampled graph.

keywords: network sampling, relational classifi-
cation, centrality measures, complex networks

1 Introduction

Networks are relational structures with a high level
of order and organization, despite they display big
inhomogeneities (Fortunato, 2010). Furthermore,
networks are extremely useful as a representation
of a wide variety of complex systems in a lot of
real-world contexts, such as social, information,
biological and technological domains (Newman,
2010). Formally, a network is denoted by a graph

G = (V,E), where V is the set of vertices repre-
senting objects in a specific context, and E is the
set of edges representing the interactions among
these objects. For instance, in a social network,
vertices are individuals and edges are the friend-
ships existing among them (Newman, 2010).

Since analyzing and modeling data in rela-
tional representation is relevant for different do-
mains, several applications have been studied to
obtain more benefits from the network struc-
ture, such as community detection (Valejo et
al., 2014), link prediction (Valverde-Rebaza and
Lopes, 2013; Valverde-Rebaza and Lopes, 2014;
Valverde-Rebaza et al., 2015), topic extraction
(Faleiros and Lopes, 2015), information diffusion
(Vega-Oliveros and Berton, 2015; Vega-Oliveros
et al., 2015), and others. Recently, there has
been a lot of interest in relational learning, espe-
cially related to relational classification techniques
(Lu and Getoor, 2003; Macskassy and Provost,
2003; Macskassy and Provost, 2007; Lopes et al.,
2009). Relational classifiers have shown best per-
formance than conventional classifiers (Valverde-
Rebaza et al., 2014).

However, most of these networks are massive in
size, being difficult to be studied in their entirety.
In some cases, the network is not totally available,
or it is hard to be collected, or even if we have the
complete graph, it can be very expensive to run the
algorithms on it. Hence, it is necessary to perform
and study on network sampling, i.e., selecting a
subset of vertices and edges from the full graph,
in such way we obtain G0 = (V 0, E0) 2 G =
(V,E) (Leskovec and Faloutsos, 2006; Ahmed et
al., 2012; Ahmed et al., 2013).

Considering the assumption that network data
fits in memory is not realistic for many real-world
domains (e.g., online social networks), different
strategies for sampling have been proposed aim-
ing to reduce the number of vertices or edges
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of a network. The state-of-the-art technique is
called as random subsampling method, which se-
lect nodes uniformly at random. However, while
this technique is intuitive and relatively straight-
forward, it does not accurately capture properties
of networks with power-law degree distributions
(Stumpf et al., 2005). To cope with this problem,
researchers have also considered other sampling
methods based on breadth-first search or random
walks. Snowball sampling method, for instance,
adds nodes and edges using breadth-first search
from a randomly selected seed node for accurately
maintaining the network connectivity within the
snowball (Lee et al., 2006). On the other hand,
the Forest Fire Sampling (FFS) method uses par-
tial breadth-first search where only a fraction of
neighbors are followed for each node (Leskovec
and Faloutsos, 2006), and the degree-based sam-
pling method selects nodes considering their prob-
abilities to be visited, which is proportional to the
node degree (Adamic et al., 2001).

Other techniques have been proposed in the lit-
erature, which consider the different sources (e.g.,
disk-resident/static or streaming) and scale (e.g.,
small or large). Although there is previous work
focusing on evaluating the performance of sam-
pling methods by comparing network statistics,
i.e. measure the representativeness of the sampled
subgraph structure comparing it with the full input
network structure (Ahmed et al., 2012; Ahmed et
al., 2013), to the best of our knowledge there is
no extensive research focused on study the impact
of using sampled networks in a specific machine
learning task, such as, classification, exploiting a
lot of classifiers and datasets. Thus, in this paper,
we propose an intuitive sampling method and use
different configurations of it to perform an empir-
ical evaluation in six real-world networks and six
classifiers. We evaluate the quality of our proposal
analyzing: i) how much the full network structure
is preserved in the sampled graphs generated, ii)
the accuracy obtained by six relational classifiers
on entire and sampled graphs; and iii) the execu-
tion time in the learning step of the classifiers.

The main contributions of this paper are: i)
we propose a new and intuitive method for sam-
pling based on centrality properties of networks,
such as, node degree, k-core, and others. These
measures can be calculated in only part of the
graph and have low computational cost; ii) we per-
form an empirical evaluation that shows the rela-

tional classification accuracy obtained by differ-
ent sampled graphs generated from our proposal is
as good as the classification accuracy obtained on
entire graphs and taking less time in the learning
phase; iii) we also analyze the network topology to
exploit which cases the sampled graphs are similar
to full graphs.

The remaining of this paper is organized as fol-
lows. Section 2 presents some concepts used in the
paper encompassing centrality measures and rela-
tional classification. Section 3 presents the pro-
posed approach for network sampling. Section 4
presents the experimental evaluation which ana-
lyzes the impact of sampling on relational classifi-
cation and on the network topology. Finally, Sec-
tion 5 presents the conclusions and future works.

2 Background

In this section, we describe the main centrality
measures used as conventional parameters in dif-
ferent sampling methods existent in the literature.
Also, we introduce briefly the main concepts on
relational classification and six of the most popu-
lar relational classifiers.

2.1 Centrality measures
In complex network, some researchers have pro-
posed different measures to analyze the impor-
tance of central vertices (Newman, 2010; Doro-
govtsev and Mendes, 2002). The centrality mea-
sures indicate how much a vertex is important
in some scope. Considering that, n = |V | and
m = |E|, the centrality measures applied in this
work are described as follow.

• Degree (DG): The degree or connectivity of
vertex i, referred to k

i

, is related with the
number of edges or connections that go (kout

i

)
or arrive (kin

i

) to vertex i. The average degree
hki for directed networks is the average of the
input or output edges. When the network is
undirected, the average degree is the factor
hki = 2 ⇤m/n, i.e., the sum of all the edges
per vertex of the network over the number of
vertices. The k

i

values can be calculated as
follow:

k
i

=
X

i2N
a
ij

. (1)

Vertices with very high k
i

values are called
hubs, which represent instances strongly
connected that impact on the dynamics of
the network (Barabasi and Bonabeau, 2003;
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Vega-Oliveros and Berton, 2015). For in-
stance, in social networks, hubs are the
most popular individuals, like famous actors,
politicians, etc. The time complexity for cal-
culating to all the vertices is O(n ⇤ hki).

• K-core (KC): The network can be decom-
posed in terms of sub-networks or cores (Sei-
dman, 1983), where each core of order (H

k

)
represents the set of vertices that has k

i

� k.
Therefore, a vertex i belongs to Kc(x) = k
if H

k

is the largest core it can be part (Sei-
dman, 1983). The principal core is the set
of vertices with the largest k-core value, and
they are the most central (Kitsak et al., 2010).
In general, vertices with lower KC values are
located at the periphery of the network. The
KC centrality is obtained by an iterative and
incremental process (Batagelj and Zaversnik,
2003) that begins with k = 1: (i) All the ver-
tices with degree lower or equal than k are re-
moved. Then, (ii) the remaining vertices are
evaluated several times, in order to remove
those with k

i

lower or equal than k. After
that, (iii) the removed vertices are part of the
set Kc(i) = k, k is incremented, and the
process continues with step (i). The final set
of vertices is the main core of the network,
which has the largest KC centrality. Notice
that not necessarily the hubs have the high-
est k-core values. For instance, hubs located
in the periphery have small k-core central-
ity (Kitsak et al., 2010). The algorithm has
low computational complexity O(n+m) for
calculating the centrality to all vertices.

• Clustering coefficient (CT): In topology
terms, it is the presence of triangles (cycles
of order three) in the network. The cluster-
ing coefficient (Watts and Strogatz, 1998) of
a vertex i is defined as the number of trian-
gles centered on i over its maximum number
of possible connections, i.e.,

CT
i

=
2e

i

k
i

(k
i

� 1)
. (2)

In the case of k
i

2 {0, 1}, it is assumed a
centrality value of zero, and CT

i

= 1 only
if all the neighbors of i are interconnected.
The running time complexity of the measure
is O(n ⇤ hki2).

• Eccentricity (EC): The shortest path be-
tween two vertices is the shortest sequence
of edges that connect them, and the distance
is the number of edges contained in the path.
This problem can be resolved by employing
different algorithms, like Dijkstra, Bellman-
Ford, Floyd-Warshall, or breadth-first search
methods (Cormen et al., 2009). In the case
that i and j belong to different components,
it is assumed that `

ij

= n. In this way, the
eccentricity value of a vertex i is the largest
distance over all the shortest path to the other
vertices, as follow:

EC
i

= max
i 6=j

{|`
ij

|} , (3)

where |`
ij

| is the distance of the shortest path
between vertices i and j. This measure eval-
uates how close is a vertex to its most distant
vertex. Lower values of EC indicates that the
vertex is more central and closer to the oth-
ers. Therefore, vertices located at the net-
work center have the lowest eccentricity val-
ues. For unweighted graphs, the running time
complexity of this measure is O(n ⇤m).

• Structural Holes (HO): Some vertices in the
network work such as the bridge of clusters
or other vertices, and if they are removed
a structural hole will occur. The structural
hole vertices act as spanners among com-
munities or groups of vertices without direct
connections. These individuals are important
to the connectivity of local regions. We cal-
culate Burt’s constraint scores (Burt, 1992) as
the structural holes centrality. The algorithm
considers all vertices as ego networks, where
connections no related to it have not a direct
effect. For each vertex, the score is the frac-
tion of isolated holes will exists associated
with it and according to its ego network. The
higher the fraction of structural holes associ-
ated with the vertex, the more central it is.
Therefore, vertices with higher degree cen-
trality tend to have low HO values, given that
its ego networks are larger and more densely
interconnected, and this diminishes the frac-
tion of isolated holes. The time complexity
for calculating the measure to all the vertices
is O(n+ n ⇤ hki2).
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2.2 Relational classification
Conventional classification algorithms learn from
a training set formed by independent and identi-
cally distributed (i.i.d) data (Mitchell, 1997). Nev-
ertheless, as previously mentioned, a lot of real-
world data are relational in nature and can be rep-
resented by graphs. Conventional classifiers do
not work properly on graphs because they ignore
pairwise dependency relations between vertices,
i.e. relational information. To cope with that,
different relational classifiers have been proposed
(Lu and Getoor, 2003; Macskassy and Provost,
2003; Macskassy and Provost, 2007; Lopes et al.,
2009). Relational classifiers require a fully de-
scribed graph (vertices and edges) with known la-
bels for some of the vertices to predict the labels
of the remaining vertices.

For the domain of relational classification, we
redefine the network as the graph G = (V,E,W ),
where V = {v1, v2, ... vn} is the set of n vertices
that describes an object, E = {e1, e2, ... e

m

} is
the set of m edges representing some similarity
between a pair of vertices and W is a matrix of
weights, which associates to each edge a weight
w
ij

that determines the strength of the connection.
For this work, we consider three relational clas-
sifiers: weighted vote relational neighbor (wvrn),
network-only Bayes (no-Bayes) and network-only
link-based (no-lb).

The wvrn classifier estimates class membership
probabilities by assuming that linked nodes tend
to belong to the same class and considering the
weighted mean of the class-membership proba-
bilities for the neighborhood of each node ana-
lyzed (Macskassy and Provost, 2007) according to
Equation 4.

P (v
i

= c|N
i

) =
1

N

X

vj2Ni

w(v
i

, v
j

)P (v
j

= c|N
j

)

(4)
The no-Bayes classifier employs multinomial

naı̈ve Bayes classifier based on the classes of
the neighborhood of each vertex (Macskassy and
Provost, 2007). The no-Bayes is defined as Equa-
tion 5,

P (v
i

= c|N
i

) =
P (N

i

|c)P (c)

P (N
i

)
(5)

where P (Ni|c) = 1
N

Q
vj2Ni

P (vj = cj |vi = c)w(vi,vj).
Furthermore, these two relational classifiers

use the relaxation label as a collective inference

method. The no-lb classifier creates a feature vec-
tor for a vertex by aggregating the labels of its
neighborhood and then uses logistic regression to
build a discriminative model based on those fea-
ture vectors (Lu and Getoor, 2003). This learned
model is then applied to estimate P (v

i

= c|N
i

).
For no-lb classifier, three aggregation methods
have been considered: binary-link (no-lb-binary),
mode-link (no-lb-mode), and count-link (no-lb-
count). Another aggregation method considered is
class-distribution link (no-lb-distrib) (Macskassy
and Provost, 2007). All the no-lb aggregations use
the iterative classification as a collective inference
method.

3 Proposal

As previously mentioned, our proposal consists in
an intuitive approach based on exploring the cen-
trality measures of a network to remove some ver-
tices and edges trying to conserve the equivalence
between the sampled and the entire network. We
aim to obtain a sample from G in such way it does
not affect the performance of any learning task.
Thus, our proposal generates a sample G0 from G,
i.e. G0 = �(G), where � is the function represent-
ing our proposal. It is important to note that G0 is
a sub-graph from G, so V 0 ⇢ V and E0 ⇢ E. The
size of the sample is relative to the graph size.

The proposed approach is illustrated in Figure
1 and follows these steps: 1) calculate a specific
centrality measure for all vertices of the network,
in this paper we use DG, KC, CT, EC, HO mea-
sures; 2) select some percentage of vertices with
the highest (H) or lowest (L) centrality values, in
this paper we experiment selecting 30% and 50%
of vertices; 3) remove all selected vertices and
all their corresponding edges from G, obtaining
G0. The sampled graph generated, G0, should be
equivalent to the entire graph, so learning algo-
rithms should have a similar performance in both
the sampled and the entire graph.

All measures used for sampling the graph can
be calculated considering only a fraction of the
graph, in a direct way or by employing statistical
methods. The measures DG, HO and CT, for ex-
ample, can be calculated for each vertex directly.
In the case of EC and KC, there are very precise
approaches that consider only the vertex commu-
nity (part of the network). These measures have
low computational cost to be calculated and can
be applied on very large networks, moreover, by
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(a) (b) (c)

Figure 1: Proposed approach: (a) Select % of vertices with lowest (red) or highest (green) centrality measure values from
original graph. (b) Remove all the vertices and all their edges to obtain the sampled network. In this case, we remove ver-
tices with lowest centrality measure values. (c) Use some learning task on the sampled network, for instance, the relational
classification.

the experimental results achieved good accuracy.

4 Experimental results

In this section, we present extensive empirical ex-
periments focused on evaluating the quality of
sampled graphs generated by different configura-
tions of our proposal, when compared with the
original graph. We use six real-world networks
and apply six relational classifiers (see Section
2.2) on full and sampled graphs. We perform two
types of evaluations, Section 4.2 shows the clas-
sification accuracy results, and Section 4.3 shows
the topological analysis of sampled and original
graphs.

4.1 Data sets and experimental setup

We consider six benchmark data sets1, which rep-
resent real networks and are described in Table 1.
We consider that all networks are undirected.

We sample a subgraph G0 from a graph G using
the centrality measures presented and considering
30% and 50% of vertices with smallest and high-
est centralities values. For each sample size, we
perform 10-fold cross validation and applied the
following relational classifiers: weighted vote re-
lational neighbor (wvrn), network-only Bayes (no-
Bayes), and network-only link-based (no-lb) clas-
sifiers, in their Netkit-SRL implementations with
standard configuration. For the network-only link-
based classifier we employed models modelink
(no-lb-mode), count-link (no-lb-count), binary-
link (nolb-binary) and class-distribution-link (no-
lb-distrib). The area under the ROC curve (AUC)

1http://netkit-srl.sourceforge.net/
data.html

Table 1: Data sets description.
Datasets |V | |E| # Classes hki

Cora 4240 35912 7 17.84
Cornell 351 1393 6 3.98
Imdb 1441 51481 2 66.99

Industry 2189 6531 12 10.65
Texas 338 1002 6 3.44

Washington 434 1941 6 4.41

was used as evaluation measure to compare the ac-
curacy of graph G and sampled graph G0.

4.2 Impact of sampling on classification
accuracy

The classification results for the entire graph, 30%
and 50% of the sampled networks are shown in
Figures 2 and 3 respectively, with the accuracy
for the six datasets (Figures (a), (b), (c), (d), (e)
and (f)), the six classifiers (bars) and the ten sam-
pling proposed strategies moreover the classifi-
cation with the entire graph (FULL). For all the
sampling strategies the datasets Cora and Imdb
achieved the highest accuracy. And the better clas-
sifiers, in general, was nolb-lb-count and nolb-lb-
distrib.

The Nemenyi post-hoc test (Demšar, 2006) was
executed to verify the possibility of detecting sta-
tistical differences among the sampling strategies.
The results for 30% and 50% of sampled networks
are shown in Figures 4 and 5 respectively. On the
top of the diagrams is the critical difference (CD)
and in the axis are plotted the average ranks of
the evaluated techniques, where the lowest (best)
ranks are on the left side. When the methods ana-
lyzed have no significant difference, they are con-
nected by a black line in the diagram.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: Classification results for the entire graph (FULL) and sampling strategies that remove 30% of vertices for the
following datasets: (a) Cora, (b) Cornell, (c) Imdb, (d) Industry, (e) Texas and (f) Washington.

67



(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Classification results for the entire graph (FULL) and sampling strategies that remove 50% of vertices for the
following datasets: (a) Cora, (b) Cornell, (c) Imdb, (d) Industry, (e) Texas and (f) Washington.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: Nemenyi post-hoc test for the entire graph and
sampling strategies that removes 30% of vertices for the fol-
lowing relational classifiers: (a) no-Bayes, (b) no-lb-binary,
(c) no-lb-count, (d) no-lb-distrib, (e) no-lb-mode and (f)
wvrn.

According to the Nemenyi statistics, the crit-
ical value for comparing the average-ranking of
two different algorithms considering the sampling
strategy that removes 30% of vertices (Figure 4)
or 50% of vertices (Figure 5) at 95 percentile in
all classifiers (no-Bayes, nolb-binary, no-lb-count,
no-lb-distrib, no-lb-mode, wvrn) is 6.16.

In all the classifiers there are some sampling
strategies that have no statistical difference with

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: Nemenyi post-hoc test for the entire graph and
sampling strategies that removes 50% of vertices for the fol-
lowing relational classifiers: (a) no-Bayes, (b) no-lb-binary,
(c) no-lb-count, (d) no-lb-distrib, (e) no-lb-mode and (f)
wvrn.

the entire graph. It is the case of CT-30H, CT-30L,
EC-30H and HO-30H for 30% of vertices sam-
pled, and CT-50L, EC-50H, HO-50H, KC-50L,
and DG-50L for 50% of vertices sampled. In par-
ticular, the CT-50H only had significance differ-
ence with the no-lb-distrib classifier. In terms of
accuracy, this result indicates that the CT central-
ity, for all the analyzed parameters, was more ro-
bust and suitable as a sampling strategy.
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Table 2: Execution time (ms) for classification training models.
Datasets Classifiers CT-30H EC-30H HO-30H KC-30H DG-30H FULL

no-Bayes 756 824 960 552 511 1395
nolb-binary 13498 13398 13857 13380 13313 14547

CoRa no-lb-count 12213 12585 13897 12386 12765 13759
no-lb-distrib 14218 14310 14569 14452 14401 15396
no-lb-mode 13991 13837 14097 13304 12924 17516

wvrn 552 622 713 403 378 1032
no-Bayes 74 52 52 50 39 228

nolb-binary 724 775 789 694 694 936
Cornell no-lb-count 718 809 754 697 667 1250

no-lb-distrib 753 759 772 690 719 918
no-lb-mode 729 703 726 690 712 2018

wvrn 38 49 45 31 36 145
no-Bayes 381 327 558 214 175 1042

nolb-binary 959 810 1260 659 587 1538
Imdb no-lb-count 998 843 1258 693 605 1786

no-lb-distrib 947 868 1232 662 595 1484
no-lb-mode 970 830 1086 621 600 2720

wvrn 482 387 695 253 214 1050
no-Bayes 529 635 744 314 290 2841

nolb-binary 23140 21688 22061 26874 26101 23196
Industry no-lb-count 23751 23934 27333 25806 26370 27111

no-lb-distrib 27827 26984 26721 29931 28834 28148
no-lb-mode 27854 25516 24045 28688 27881 31027

wvrn 281 323 346 187 180 541
no-Bayes 54 47 52 44 40 206

nolb-binary 809 730 703 680 601 914
Texas no-lb-count 826 773 765 703 605 1125

no-lb-distrib 766 681 701 680 633 895
no-lb-mode 657 642 666 674 664 2283

wvrn 42 38 42 37 40 153
no-Bayes 68 72 66 45 42 277

nolb-binary 967 963 950 888 804 1016
Washington no-lb-count 1016 977 957 899 868 1124

no-lb-distrib 1043 955 945 880 794 1190
no-lb-mode 870 948 877 897 834 2300

wvrn 51 54 80 44 46 218

Table 2 shows the time comparison for the
learning step for all classifiers and all datasets.
We notice that all sampling strategies proposed,
considering 30% of sampling, achieve small time
compared with the original graph, especially the
strategy DG and KC. The lowest times are in bold.

4.3 Impact of sampling on network topology

We have analyzed the impact of the sampling
methods in the structure of the original network.
In Table 3, we have the fraction of remaining
edges after applying the sampling methods, ac-
cording to the target vertices (with highest (H) or
lowest (L) centrality value) and removal percent-
age (30 or 50%). The bold values highlight the
techniques and parameters that achieve similar ac-
curacy results to the full network, i.e., with no
significance difference for all the classifiers. We
have observed that the EC and HO measures are
inversely proportional to the final fraction of re-

maining edges. This occurs since for the EC, the
most central or closest vertices have the lowest
values and for the HO measure, hubs tend to have
larger ego-networks; ergo, the centrality values are
lower.

We notice that there exists diverse values of re-
moved edges from the original network, without
strongly affecting the accuracy of the classifiers
(in bold). This variation of removed edges, some
larger than 50%, suggest that depending on the
expected requirements, it can be privileged in the
sampling process:

1. The maximal removal of edges by removing
a low proportion of vertices.

2. Equivalent removal proportion of edges and
vertices.

3. The minimal removal of edges by removing
a high proportion of vertices.
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In the first case, by removing 30% of vertices we
have the sampling method CT-30H. For the third
case, we have the methods DG-50L, KC-50L, and
HO-50H. The left bold sampling strategies are in
the second case.

Notwithstanding reducing the number of ver-
tices and edges from the original network do not
statistically impact the classification results, the
topological properties are sensibly affected by the
removal. For instance, removing 30% of vertices
with the highest degree centrality (k

i

) it produces
a more homogeneous distributed network (tending
to a Poisson or regular graph) and the average de-
gree decays. On the other hand with the same pro-
portion, removing the least connected vertices pro-
duce networks with more heterogeneous degree
distribution than the original graph.

Table 3: Descriptions of edges on sampled graphs.
Datasets Measures #edges 30H #edges 30L #edges 50H #edges 50L

DG 0.216 0.916 0.077 0.780
KC 0.266 0.918 0.093 0.785

CoRa HO 0.912 0.231 0.767 0.090
EC 0.718 0.389 0.477 0.191
CT 0.555 0.600 0.293 0.368
DG 0.067 0.853 0.017 0.666
KC 0.140 0.849 0.040 0.670

Cornell HO 0.853 0.080 0.659 0.020
EC 0.662 0.326 0.479 0.114
CT 0.500 0.702 0.051 0.553
DG 0.226 0.881 0.069 0.648
KC 0.284 0.881 0.086 0.653

Imdb HO 0.872 0.252 0.637 0.096
EC 0.499 0.347 0.264 0.146
CT 0.601 0.553 0.314 0.290
DG 0.079 0.952 0.029 0.883
KC 0.090 0.951 0.039 0.887

Industry HO 0.952 0.094 0.882 0.035
EC 0.758 0.354 0.354 0.152
CT 0.575 0.934 0.203 0.438
DG 0.083 0.835 0.026 0.634
KC 0.182 0.829 0.070 0.643

Texas HO 0.835 0.083 0.626 0.034
EC 0.685 0.529 0.492 0.196
CT 0.474 0.720 0.085 0.559
DG 0.082 0.857 0.017 0.680
KC 0.178 0.863 0.074 0.692

Washington HO 0.855 0.084 0.685 0.028
EC 0.724 0.268 0.524 0.114
CT 0.467 0.745 0.081 0.616

5 Conclusion

In this paper, we proposed a strategy for network
sampling by exploring five centrality measures:
DG, KC, CT, EC, HO and eliminating vertices
with 30% or 50% of lowest or highest centrality
values. All centrality measures considered have a
low order of complexity and are computationally
applicable in real networks scenarios. Moreover,
they can be calculated in part of the graph.

The proposed approach reduces the original
graph in 50% or even more and the accuracy re-
sults remain statistically similar to the obtained

with the entire network, i.e. the impact on clas-
sification results obtained by entire networks is
minimal when compared with those obtained by
sampled networks. We have applied the proposed
strategy in six real networks considering six differ-
ent relational classifiers. The CT measure was the
most robust in accuracy for all classifiers and on all
networks, without statistical significance. More-
over, the execution time for the learning step of the
classifiers are smaller in the sampling strategies
proposed when compared with the entire graph.
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