
Parallel Model Checking of ω-Automata

Vincent Bloemen

Formal Methods and Tools, University of Twente
v.bloemen@utwente.nl

Abstract. Specifications for non-terminating reactive systems are de-
scribed by ω-regular properties. Such properties can be translated in var-
ious types of automata, e.g. Büchi, Rabin, and Parity. A model checker
can then check for language containment and determine whether the
system meets the specification. Checking these automata becomes more
complex when introducing probabilities and/or an adversary, e.g. the
uncontrollable environment, to the automaton.
Parallel algorithms have become crucial for fully utilizing current hard-
ware systems. With respect to model checking we therefore focus on
designing scalable parallel algorithms for emptiness checking.
This research focuses on designing and improving parallel graph search-
ing algorithms for emptiness checking on various types of ω-automata.
As a basis, we developed a scalable multi-core on-the-fly algorithm for
the detection of strongly connected components (SCCs). Our aim is to
contribute to the state-of-the-art techniques in parallel model checking,
based on both theoretical complexity analysis and empirical studies on
suitable benchmarks.

1 Introduction

Model checking. The automata-theoretic approach to model checking ω-regular
properties involves taking the synchronized product of the (negated) property
to check and the state space of the system. The resulting product automaton is
then checked for language emptiness by searching for an infinite execution that
satisfies the acceptance condition, which is defined by the ω-automaton. If such
an accepting trace is found, the system is able to perform behaviour that is not
allowed by the original property, hence we say that a counterexample has been
found [6].

Types of ω-automata. An ω-automaton accepts infinite strings which is useful
for specifying behaviour in non-terminating systems, i.e. control systems. The
acceptance condition can be described in various types of automata, most com-
monly Büchi, co-Büchi, Rabin, Streett, Parity and Muller (see Section 3 for the
definitions). While each type of (nondeterministic) automaton can describe the
same property, the sizes of these automata may differ exponentially. As a con-
sequence, the choice of automata could significantly improve the time to model
check. On the other hand, the model checking procedure may also become a lot
more complex for such smaller automata.



Chatterjee and Henzinger [5] provide a good overview on different classes of
ω-regular properties and how these 1-player properties can be extended with e.g.
adversaries (2-player) and probabilities (11/2 and 21/2-player). With an adversary,
the automaton is called a game and the goal of player 1 is to ‘force’ the property,
i.e. satisfying the property for all possible actions of the adversary.

Parallel model checking. Multi-core architectures have become increasingly more
accessible, and the number of CPU cores grows as well. Scalable solutions have
been presented to solve the reachability problem [1,11] and the accepting cy-
cle problem [7,16,3,4]. On a 64-core machine, the accepting cycle problem is
currently being solved 25 times faster compared to a sequential approach [4].
For many other acceptance conditions, there is limited to non-existing work in
parallel solutions.

Motivation. The main motivation of this work is to better understand how
model checking can be efficiently applied in a practical sense. Two aspects of
importance are how the type of automaton influences the model checking pro-
cedure, and how parallelism can be fully exploited in the algorithms. Currently,
however, it remains unknown whether a particular type of ω-automaton can be
checked efficiently in parallel. While the common approach in practice seems to
use Büchi automata for LTL model checking, a Rabin automaton might be a
better alternative [17].

Expected contributions. In this research we aim to contribute to scalable paral-
lel solutions for model checking various types of ω-automata. We focus on ex-
plicit state on-the-fly graph search algorithms. At present, we designed a scalable
multi-core on-the-fly strongly connected component (SCC) algorithm [2,3] based
on parallel depth-first search (DFS) and concurrent union-find (more on this
in Section 2). We consider this algorithm as a basis for the research and have suc-
cessfully applied it in the context of LTL model checking for Büchi automata [4].
We continue by designing and investigating parallel solutions for other types of
automata. This is followed by studying 2-player cases and stochastic instances,
e.g. by improving Maximal End Component (MEC) decomposition.

2 Strongly Connected Components in Parallel

Preliminaries. For a directed graph G := 〈V,E〉, two states v, w ∈ V are strongly
connected iff there is a path from v to w and also from w to v. A strongly connected
component (SCC) is defined as the maximal set of states C ⊆ V such that for
all states v, w ∈ C, v and w are strongly connected. An SCC is called trivial if
it consists of a single state v and there is no edge v → v ∈ E. We further define
the notion that C is a partial SCC if all states in C are strongly connected, but
C is not necessarily maximal.

We assume that the graph is computed on-the-fly. This implies that an al-
gorithm initially only has access to the initial state, and can use a function to
compute the successor states: suc(v) := {w ∈ V | v → w ∈ E}.



a b c

d e f

Fig. 1: Two workers cooperate to
find an accepting cycle. Fig. 2: Cyclic list structure.

A multi-core on-the-fly algorithm for detecting SCCs. The general idea behind
the algorithm is to perform multiple randomized1 DFS instances in parallel
and globally communicate detected cycles. The main improvement on related
work [13,16] is that a complete SCC can be detected in parallel without having
to rely on a single worker to visit every state of the SCC. By tracking partial
SCCs, multiple workers can even cooperatively detect cycles. As a result, scalable
on-the-fly SCC decomposition is now possible for large SCCs.

The algorithm. We describe the algorithm without going in much detail, for a
more in-depth description we refer the reader to Bloemen et al. [3]. A concurrent
union-find structure is used for globally communicating partial SCCs. In essence
this is a structure to maintain sets of states and a single state is the representative
or root of a set. Whenever a worker detects a cycle, it merges all (sets of) states
on this cycle to a single set in the union-find structure.

Tracking worker IDs. We extended the union-find structure to also maintain
worker IDs in the root of each set. When a worker visits a new state v, it adds
its worker ID to the root of the set for v. As a consequence, the worker will
regard every state in the partial SCC of v as a ‘visited’ state. We exploit this for
detecting cycles, as we show in Fig. 1. Here, a ‘blue’ worker detected the cycle
{b, e, d} and the ‘red’ worker has visited the path a → b → c → f . If the red
worker visits state e, it will detect that it has already visited this set (namely
via b), thus it reports a cycle and merges states c and f to the set.

Cyclic lists for tracking non-fully explored states. We say that a state v is fully
explored if all its successors either direct to completed SCCs or to other states
in the set of v, since we cannot gain more information from v. A cyclic list,
illustrated in Fig. 2, tracks all states in the partial SCC that still have to be
fully explored (marked white) and removes the fully explored ones (marked gray).
Cyclic lists get merged when states are added to the partial SCC. Workers select
states from the list to search from. When the list is empty, all states of the
(partial) SCC have been fully explored and the SCC can be marked as completed.

1 The set of successors is randomly ordered for each worker, such that each worker
explores the graph in a different order.



3 Acceptance on ω-automata

An ω-automaton is defined in Definition 1, as presented by Grädel et al. [8]

Definition 1 (ω-automaton). An ω-automaton is a tuple A = 〈Q,Σ, δ, q0,F〉,
where Q is a finite set of states, Σ is a finite alphabet, δ : Q×Σ → 2Q is the state
transition function, q0 ∈ Q is the initial state, and F is the acceptance compo-
nent. In a deterministic ω-automaton, a transition function δ : Q × Σ → Q is
used.

Acceptance conditions. We describe the acceptance component F for different
types of ω-automata. A run is an infinite sequence of states, starting from q0,
such that for every two successive states v, w there is a transition from v to w.
A word α ∈ Σω is accepted by A iff there exists a run ρ of A on α such that

– (Büchi acceptance) Inf(ρ)∩F 6= ∅, where F ⊆ Q is a set of accepting states.
– (co-Büchi acceptance) Inf(ρ) ∩ F = ∅, where F ⊆ Q.
– (Rabin acceptance) ∃(L,R) ∈ F : (Inf(ρ)∩L = ∅)∧ (Inf(ρ)∩R 6= ∅), where
F = {(L1, R1), . . . , (Lk, Rk)} with Li, Ri ⊆ Q.

– (Streett acceptance) ∀(L,R) ∈ F : (Inf(ρ)∩L 6= ∅)∨(Inf(ρ)∩R = ∅), where
F = {(L1, R1), . . . , (Lk, Rk)} with Li, Ri ⊆ Q.

– (Parity acceptance) min{F(q) | q ∈ Inf(ρ)} is even, where F : Q →
{1, . . . , k} is a mapping from states to priorities.

– (Muller acceptance) Inf(ρ) ∈ F , where F ⊆ 2Q is a collection of accepting
sets of states.

Here, Inf(ρ) denotes the set of states that is visited infinitely often in the run
ρ. Fig. 1 illustrates a Büchi automaton, where f is an accepting state and a →
b→ c→ f → e→ d→ b→ . . . is an accepting cycle.

Generalized and transition-based acceptance. Conjunctions of multiple Büchi Au-
tomata (BA) can also be described with Generalized Büchi Automata (GBA). A
GBA considers a set of multiple acceptance conditions, meaning that a run is ac-
cepting iff all acceptance conditions are visited infinitely often. Another variant is
the Transition-based Büchi Automata (TBA) with acceptance on edges instead
of states and the combination is called a Transition-based Generalized Büchi
Automata (TGBA). Such generalized variants of automata can significantly re-
duce the state-space, though tracking acceptance becomes more involved. We
observed that using a TGBA instead of a BA does not necessarily lead to better
model checking performance in practice [4].

4 Related Work

One-player automata. As already mentioned in Section 1, efficient parallel so-
lutions exist for the reachability problem [1,11] and the accepting cycle prob-
lem [7,16,3] (or Büchi acceptance). Recently, a GPU algorithm for model check-
ing Rabin automata was presented [17]. Streett acceptance is somewhat related



to fairness detection, a problem for which existing work is present in a par-
allel setting [12]. For other acceptance conditions no existing work on parallel
algorithms seems to exist.

Two-player and stochastic automata. Interestingly, in a 2-player context there
is plentiful work on solving Parity acceptance (Parity games) sequentially, but
related work also includes a few parallel solutions [15,9]. To the best of our
knowledge, no parallel algorithms exist for the remaining automata. Wijs et
al. [18] present a solution for MEC decomposition on GPUs, a core problem in
stochastic model checking (which also relates to Büchi games).

5 Current and Future Work

Approach. (On-the-fly) SCC detection forms a basis for emptiness checking al-
gorithms. Our plan is to apply our parallel on-the-fly SCC algorithm [3] and
related ‘building blocks’ in detecting the various acceptance conditions. We use
these building blocks to parallelize existing techniques, and e.g. in the case of
Parity games improve existing work by applying various novel optimizations.

Evaluation. We evaluate the performance and scalability of our algorithms (1)
theoretically, using appropriate notions of complexity analysis and (2) empiri-
cally, by performing experiments on existing publicly available benchmark suites
(e.g. the BEEM [14] database and experiments from the Model Checking Con-
test [10]) and comparing with related work. We relate this to the original prop-
erties to compare different acceptance conditions.

Current stage of research. Currently, one of the four years of the PhD has passed.
We have published two papers, one presents the SCC algorithm [3] and another
that applies the algorithm for LTL checking with Büchi automata [4]. We also
obtained a first place for LTL checking in the 2016 Model Checking Contest [10].
We are currently investigating Rabin and Streett acceptance.

Acknowledgements. We thank the anonymous reviewers for their helpful com-
ments. This work is supported by the 3TU.BSR project.

References

1. Barnat, J., Brim, L., Rockai, P.: DiVinE 2.0: High-Performance Model Checking.
In: Proceedings of the 2009 International Workshop on High Performance Compu-
tational Systems Biology. pp. 31–32. HIBI ’09, IEEE Computer Society (2009)

2. Bloemen, V.: On-The-Fly Parallel Decomposition of Strongly Connected Compo-
nents. Master’s thesis (2015)

3. Bloemen, V., Laarman, A., van de Pol, J.: Multi-core On-the-fly SCC Decompo-
sition. In: Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. pp. 8:1–8:12. PPoPP ’16, ACM (2016)



4. Bloemen, V., van de Pol, J.: Multi-core SCC-based LTL Model Checking. In: Haifa
Verification Conference. Springer (2016), to appear.

5. Chatterjee, K., Henzinger, T.A.: A Survey of Stochastic ω-regular Games. Journal
of Computer and System Sciences 78(2), 394–413 (2012)

6. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite-state
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems 8(2), 244–263 (1986)

7. Evangelista, S., Laarman, A., Petrucci, L., van de Pol, J.: Improved Multi-Core
Nested Depth-First Search. In: Chakraborty, S., Mukund, M. (eds.) Automated
Technology for Verification and Analysis, pp. 269–283. Lecture Notes in Computer
Science, Springer Berlin Heidelberg (2012)

8. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games:
A Guide to Current Research. Springer-Verlag (2002)

9. Hoffmann, P., Luttenberger, M.: Solving Parity Games on the GPU. In: Van Hung,
D., Ogawa, M. (eds.) Automated Technology for Verification and Analysis, Lec-
ture Notes in Computer Science, vol. 8172, pp. 455–459. Springer International
Publishing (2013)

10. Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Chiardo, G., Hamez, A.,
Jezequel, L., Miner, A., Meijer, J., Paviot-Adet, E., Racordon, D., Rodriguez, C.,
Rohr, C., Srba, J., Thierry-Mieg, Y., Tri.nh, G., Wolf, K.: Complete Results for the
2016 Edition of the Model Checking Contest (2016)

11. Laarman, A., van de Pol, J., Weber, M.: Boosting Multi-core Reachability Perfor-
mance with Shared Hash Tables. In: Proceedings of the 2010 Conference on Formal
Methods in Computer-Aided Design. pp. 247–256. FMCAD ’10 (2010)

12. Liu, Y., Sun, J., Dong, J.: Scalable Multi-core Model Checking Fairness Enhanced
Systems. In: Breitman, K., Cavalcanti, A. (eds.) Formal Methods and Software
Engineering, Lecture Notes in Computer Science, vol. 5885, pp. 426–445. Springer
Berlin Heidelberg (2009)

13. Lowe, G.: Concurrent depth-first search algorithms based on Tarjan’s Algorithm.
International Journal on Software Tools for Technology Transfer pp. 1–19 (2015)

14. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers, pp. 263–267.
Springer Berlin Heidelberg (2007)

15. van de Pol, J., Weber, M.: A Multi-Core Solver for Parity Games. Electronic Notes
in Theoretical Computer Science 220(2), 19–34 (2008)

16. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Variations on parallel
explicit emptiness checks for generalized Büchi automata. International Journal
on Software Tools for Technology Transfer pp. 1–21 (2016)

17. Wijs, A.: BFS-Based Model Checking of Linear-Time Properties with an Applica-
tion on GPUs, pp. 472–493. Springer International Publishing (2016)

18. Wijs, A., Katoen, J.P., Bošnački, D.: GPU-Based Graph Decomposition into
Strongly Connected and Maximal End Components. In: Biere, A., Bloem, R. (eds.)
Computer Aided Verification, Lecture Notes in Computer Science, vol. 8559, pp.
310–326. Springer International Publishing (2014)


	Parallel Model Checking of -Automata

