
Word-level Formal Verification
Using Abstract Satisfaction

Rajdeep Mukherjee

Department of Computer Science, University of Oxford, UK
rajdeep.mukherjee@cs.ox.ac.uk

Abstract. With the ever-increasing complexity of hardware (HW) and SoC-based
designs for mobile platforms, demand for scalable formal verification tools in the
semi-conductor industry is always growing. The scalability of hardware model
checking tools depends on three key factors: the design representation, the ver-
ification engine, and the proof engine. Conventional SAT-based bit-level formal
property checking tools for hardware, as shown in the top flow of Figure 1, con-
verts the design into a netlist, typically represented using And-Inverter graphs
(AIGs). These tools can not exploit the word-level structure of designs given at
the register transfer level (RTL). Over the last decade, formal hardware verifica-
tion tools have therefore implemented a word-level representation of the transi-
tion relation, typically represented using BLIF format or tool-specific word-level
formats, thus enabling the use of modern solvers for Satisfiability Modulo The-
ories (SMT). However, the performance of word-level symbolic execution en-
gine is determined by the level of abstraction of the symbolic expressions and
the power of the rewrite engines used by the SMT solvers. State-of-the-art bit-
level and word-level formal verification tools scale up to block level or small IP
level circuits. These tools generally do not scale to large IPs, subsystems, or full
SoC designs. Figure 1 presents a conventional bit-level hardware/software co-

SAT/

SMT

Transition
Formula

Formula
Unwind

loops

Transition
Unwind

System

C
(Reference)

Verilog
(HW)

CFG

System

Fig. 1. Hardware property checking and HW/SW co-verification tool flow

verification flow in the presence of a firmware. The main limitation of this flow is
that the hardware (typically represented in Verilog RTL) and software (in C) syn-
thesis flow meet only at the level of the solver. The high-level design structure of
C and RTL is already lost at this level and thus there is very limited opportunity
for scalable reasoning.
In this thesis, we propose a novel approach for verifying hardware circuits, at the
heart of which is a verifier for software. To this end, we translate hardware design,
typically given in Verilog at register-transfer level into an equivalent word-level
ANSI-C program, which we call software netlist, following synthesis semantics.

The property of interest is instrumented into the C program as an assertion. This
change in the design representation at the front-end allows us to leverage the pre-
cision and scalability of state-of-the-art software analyzers in the back-end. In
particular, we apply well known software verification techniques such as path-
based symbolic execution [1], abstract interpretation [2] and abstract conflict
driven learning [3] to hardware designs by synthesizing them to a software netlist
model. These techniques have never been applied to formal hardware verification
based on netlists.

Contributions We make the following contributions in this research.
1. We present a high-level software representation for hardware circuits ex-

pressed at register-transfer level. To this end, we develop a tool v2c to au-
tomatically synthesize a software netlist model in C from hardware circuits
expressed in Verilog RTL following synthesis semantics. The work is pub-
lished in TACAS 2016 [4].

2. The high-level representation of hardware circuits enable higher level rea-
soning using various software verification techniques. In particular, we pro-
pose a novel hardware verification flow for bounded and unbounded safety
verification of hardware circuits using state-of-the-art software analyzers
such as CBMC, Astrée, Klee, CPAChecker, Ultimate Automizer. The work
is published in ISVLSI 2015 [5] and DATE 2016 [6].

3. We develop a HW/SW co-verification framework embodied in our tool, Ver-
ifOx, for bounded HW/SW co-verification of IP level and SoC level designs.
VerifOx supports IEEE 1364-2005 System Verilog standards and the C89,
C99 standards. VerifOx also supports SAT and SMT backends for constraint
solving. It first builds an unified HW-SW model in C for co-verification task.
A precise path-based forward symbolic execution is performed on this uni-
fied model using eager path pruning strategy and incremental SAT solving.
Our experiments show that VerifOx is order of magnitude faster than con-
ventional HW/SW co-verification tools based on netlist due to its path-based
symbolic execution approach.

4. We develop a tool for C versus RTL equivalence checking using automatic
trace partitioning to scale up sequential and combinational equivalence check-
ing of complex arithmetic circuits and other data and control-intensive cir-
cuits. The work is published in ISVLSI 2015 [7].

5. We develop a new program analysis technique, ACDCL, based on Abstract
Conflict Driven Clause Learning [3] for verifying software netlist models
generated from hardware circuits in Verilog. ACDCL performs program and
property driven trace partitioning to improve the precision of the analysis
using abstract domains like – intervals, octagon, polyhedra and equality do-
mains.

Research Methodology

The primary motivation for the transition from bit level to word level is to gain
scalability [5,6]. The use of high-level structures as a design description for model
checking is a holy grail of hardware verification. To this end, we take a step fur-
ther and move beyond word-level verification by translating the hardware design
at RTL to a software representation in C. Note that the software model is not an
abstraction of the hardware circuit, but a bit-precise and cycle-accurate model.

Software Verification Algorithms

v2c
Verilog
(HW)

C
(optional
Software)

parse

Translator C parse

Common
IR

IMPACT

Abstract
Interpretation

SAT

SMT

Solver engine

Symbolic
Simulation

Abstraction
Predicate

BMC

Fig. 2. Proposed hardware verification and co-verification tool flow

This preserves the word-level structure and the control-flow information of the
input RTL design. The translation details are presented in [4].
Figure 2 gives an overview of the tool architecture we propose. The input Verilog
design is synthesized to a software netlist model in C using v2c. This high-level
representation allow us to verify hardware IP’s using different state-of-the-art
software verifiers. Note that the hardware design may be augmented with soft-
ware, such as firmware or high-level models of surrounding IPs given in C. The
proposed tool architecture also provides an unified framework to uncover hard-
ware/software design bugs much early in the verification process. To the best
of our knowledge, this is the first attempt to perform hardware verification and
hardware/software co-verification using software analyzers.
Our evaluation using different program analysis techniques show that these tech-
niques are competitive to the contemporary hardware verifiers based on netlist.
For example, state-of-the-art abstract interpretation tools like Astrée was never
optimised for precise hardware analysis, and we thus believe that there is scope
for new tools that implement abstract interpretation using abstract domains de-
veloped specifically for this task, e.g., by applying abstract conflict driven clause
learning (ACDCL) [3] – a new program analysis that embeds an abstract domain
inside the Conflict Driven Clause Learning (CDCL) algorithm. From the abstract
interpretation point of view, ACDCL is an abstract interpreter that uses decision
and learning to increase transformer precision. From the decision procedure per-
spective, ACDCL is a SAT solver for program analysis constraints and is thus
a strict generalisation of propositional CDCL solvers. Constraint propagation in
ACDCL uses fixed point iteration, decisions restrict the range of intervals and
learning generates program analysis constraints (not assumptions) that preserve
the error reachability. Moreover, ACDCL implicitly perform program and prop-
erty driven trace partitioning to increase the precision of the analysis. Our exper-
iments show that the abstract domains necessary for hardware property checking
are – booleans, bitfield, constants, interval, equality and octagons domains.
Let us consider a simple safe program P as shown in Figure 3A. Astrée fails to
verify the safety using interval and trace-partition domain due to control-flow join
at location n5. Astrée requires external hints, provided by manually annotating the
code with partition directives at n1, to prove safety. In general, the imprecision is
either intended by the tool because such high precision analysis is normally not
required for runtime error analysis or the imprecision is unavoidable due to the
complexity of the application under analysis.
On the other hand, ACDCL uses decision and learning to generate the proof us-
ing simple interval domain. The analysis associates an interval with each location

Error Error

x: = 3 x: = −1

[z = 4]

Decision

Conflict

Learn: (c != 0)

z:= x*x
n4

n5 n6
[z = -2]

n1

n2 n3

z:= x*x
n4

n5 n6

n1: c = [0,0] n2: ⊥

n3: c = [0,0] n4: x = [-1,-1]

n6: ⊥

n5: z = [1,1]

n1

n2 n3

[c != 0] [c == 0]

x:= 2 x:= -1

[z = -2]

[x = 2]

[x = >]

A. CFG P B. CFG P’ C. ACFG for P’
[z = 4]

[x = ⊥]

[c != 0] [c == 0]

Fig. 3. A control flow graph for P, P’ and abstract conflict graph (ACFG)

and variable. Assuming bool : c = [0,1], ACDCL performs backward propaga-
tion starting from n6 by computing the weakest precondition for every statement
in P and immediately infers that (n4 : x = ⊥), thus proving safety as shown
in red color in figure 3A. Now, let us consider program P′ in Figure 3B. As-
suming char : c, ACDCL performs both forward and backward propagations
(shown in red color in Figure 3B). The analysis then perform sequence of de-
cisions starting with c = [0,255] and reaches a conflict when the decision is
(n1 : c == [0,0]) which is connected to (n6 : ⊥) and suffices to prove safety.
The deductions made during fixed point iteration are represented by abstract con-
flict graph shown in Figure 3C. Similar to conflict analysis phase in SAT solvers,
ACDCL learn (n1 : c = [1,255]), that is all error traces must satisfy (c 6= 0) at n1.
The analysis backtracks discarding all assumptions. Interval analysis is run with
the learnt constraint and can prove safety. Thus, decisions and clause learning
are used to avoid case based reasoning. The advantage of ACDCL over proposi-
tional SAT solver is that the decision heuristics in ACDCL can exploit the pro-
gram structure by making decisions on interesting program variables (for exam-
ple variables in conditional branches or loop variables). Experimental evidence
shows that this leads to significantly less number of decisions and less number
of conflicts compared to the propositional solver. Compared to classical abstract
interpretation based tools, ACDCL automatically performs program and property
driven trace partitioning using decision and clause learning to generate proofs us-
ing simpler domain – thus, it is more precise than classical abstract interpretation.

Abstract Conflict Driven Clause Learning

Static program analysis based on abstract interpretation [2] has been widely used
to verify certain classes of properties for safety-critical systems. In abstract in-
terpretation, a given program is analysed with respect to a set of given abstract
domains. However, ACDCL is a novel program analysis technique that embeds
an abstract domain inside the CDCL algorithm. From the abstract interpretation
point of view, ACDCL is an abstract interpreter that uses decision and learning to
increase transformer precision. From the decision procedure perspective, ACDCL
is a SAT solver for program analysis constraints and is thus a strict generalisa-
tion of propositional CDCL solvers. Constraint propagation in ACDCL uses fixed
point iteration, decisions restrict the range of intervals and learning generates pro-
gram analysis constraints (not assumptions) that preserve the error reachability.

Algorithm 1: Abstract Conflict Driven Clause Learning
input : Program P with properties specified with assert(c)
output: The status (safe or unsafe) and a counterexample if unsafe

1 assign result=deduce (P)
2 if result ==⊥ then
3 return safe
4 else
5 if is gamma complete() then
6 return unsafe
7 while true do
8 assign decision variable = decision heuristics(P)
9 if decision variable == NULL then

10 return unknown
11 else
12 assign result=deduce (P)
13 if result == UNKNOWN then
14 if is gamma complete() then
15 return unsafe
16 else
17 continue
18 else
19 do
20 if ¬ conflict analysis() then
21 return safe
22 assign result=deduce (P)
23 while result ==⊥
24 end

Moreover, ACDCL implicitly perform program and property driven trace par-
titioning to increase the precision of the analysis. We observe that the abstract
domains necessary for hardware property checking are – booleans, constants, in-
terval, equality and octagons domains.
Algorithm 1 presents an overview of the ACDCL algorithm. Given a program P
with properties specified as assert(c), ACDCL terminate with safe if there exist
no counterexample trace violating the assertion or unsafe otherwise. The proce-
dure deduce(P) is similar to BCP step in SAT solvers where it computes least
fix-point with strongest post-condition using forward analysis. If the result of
deduce(P) is BOTTOM (⊥), the algorithm terminates with safe. Else, the gamma
completeness check [8] is performed to determine if it is a real counterexam-
ple. If the gamma completeness check is successful, then the counterexample is
real. Else, the algorithm enters into the while(true) loop and heuristically picks a
meet irreducible for decision. For example, assuming interval domain, decisions
restrict the range of intervals for variables, so the analysis jumps under a great-
est fixed-point. Note that the widening operation in abstract interpretation jumps
above a least fixed-point, so decisions can be viewed as dual widening. The pro-
cedure deduce(P) is called next to deduce new facts for current decision. The
algorithm terminates with unsafe if the result of deduce(P) is gamma complete.

Else, the algorithm enters in to con f lict analysis() phase to learn the reason for
conflict. There can be multiple incomparable reasons for conflict – based on the
choice of Unique Implication Point (UIP), ACDCL heuristically choose one. A
learnt clause must include asserting cuts which guarantees derivation of new in-
formation after backtracking. The clause learning and backtracking continues as
long as the result of deduction is BOTTOM (⊥) or the analysis backtracks to de-
cision level 0. If no further backtrack is possible, then the algorithm terminates
with safe. Else, the algorithm makes a new decision and the above process is
repeated until a real counterexample is obtained or the algorithm backtracks to
decision level 0 after a conflict in which case it returns safe. Currently, ACDCL
handles loops in the program by unrolling the bounded loops. However, we are
developing a new technique for automatic invariant generation using ACDCL for
unbounded proofs.

References

1. C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs,” in OSDI. USENIX, 2008, pp. 209–224.

2. P. Cousot, “Proving the absence of run-time errors in safety-critical avionics code,” in EM-
SOFT, 2007, pp. 7–9.

3. V. D’Silva, L. Haller, and D. Kroening, “Abstract conflict driven learning,” in Principles of
Programming Languages (POPL). ACM, 2013, pp. 143–154.

4. R. Mukherjee, M. Tautschnig, and D. Kroening, “v2c – a Verilog to C translator,” in Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), ser. LNCS. Springer,
2016.

5. R. Mukherjee, D. Kroening, and T. Melham, “Hardware verification using software analyz-
ers,” in IEEE Computer Society Annual Symposium on VLSI. IEEE, 2015, pp. 7–12.

6. R. Mukherjee, P. Schrammel, D. Kroening, and T. Melham, “Unbounded safety verification
for hardware using software analyzers,” in DATE, 2016.

7. R. Mukherjee, D. Kroening, T. Melham, and M. Srivas, “Equivalence checking using trace
partitioning,” in IEEE Computer Society Annual Symposium on VLSI. IEEE, 2015, pp. 13–
18.

8. R. Giacobazzi and E. Quintarelli, “Incompleteness, counterexamples, and refinements in ab-
stract model-checking,” in SAS, 2001, pp. 356–373.

