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Abstract. A standing challenge for the adoption of machine learning (ML) tech-
niques in safety-related applications is that misbehaviors can be hardly ruled out
with traditional analytical or probabilistic techniques. In previous contributions
of ours, we have shown how to deal with safety requirements considering both
Multi-Layer Perceptrons (MLPs) and Support Vector Machines (SVMs), two of
the most effective and well-known ML techniques. The key to provide safety
guarantees for MLPs and SVMs is to combine Satisfiability Modulo Theory
(SMT) solvers with suitable abstraction techniques. The purpose of this paper
is to provide an overview of problems and related solution techniques when it
comes to guarantee that the input-output function of trained computational mod-
els will behave according to specifications. We also summarize experimental re-
sults showing what can be effectively assessed in practice using state-of-the-art
SMT solvers. Our empirical results are the starting point to introduce some open
questions that we believe should be considered in future research about learning
with safety requirements.

1 Introduction

Machine learning (ML) techniques are adopted in a wide range of research and en-
gineering domains. For instance, artificial agents that act in physical domains can be
equipped with learning capabilities in order to acquire the dynamics of interest, thus
saving developers from the burden of devising explicit models — see [1–3] for exam-
ples. However, in spite of some exceptions, ML techniques are confined to systems
which comply to the lowest safety integrity levels, achievable with standard industrial
best practices [4]. The main reason is the absence of effective safety assurance meth-
ods for systems using ML techniques, because traditional analytical and probabilistic
methods can be ineffective in safety-related applications — see, e.g., [5]. In practice,
guaranteeing safety amounts to controlling undesirable behaviors when the agent acts
based on a model of the environment. In some cases of interest, a further challenge is re-
lated to the cost of sampling, i.e., acquiring new data for learning, so that the challenge
of ensuring safety, must also be coupled with the paucity of samples.

In previous contributions of ours we have shown effective approaches to learning
with safety requirements. In particular, in [6] we tackled the problem of ensuring that
a trained Multi-Layer Perceptron (MLP) emits outputs which are guaranteed to stay
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within range of values considered to be safe. We called this global safety in [7], where
we introduced two additional problems, namely local safety and stability. In the former
case, we wish to guarantee that an input close to a training input sample, will elicit an
output close to the corresponding training output sample. In the latter case, we wish to
ensure that if the input is contained within some bounded region, also the output will
be contained within a corresponding bounded set. Since effective learning with MLPs
requires a large number of samples and their empirical tuning is often fraught with
difficulties, in [8] we considered safety requirements in conjunction with kernel-bases
methods. In order to reduce the number of samples we considered Active Learning
(AL) — see, e.g., [9] — and we focused on Support Vector Regression (SVR) — see,
e.g., [10] for a tutorial introduction.

In all the contributions above, the problem of providing safety guarantees is en-
coded to formulas that can be solved automatically by Satisfiability Modulo Theory
(SMT) solvers [11]. Intuitively, verification of MLPs/SVRs via SMT involves abstrac-
tion of the learned model into a set of constraints expressed in linear arithmetic over real
numbers. The abstraction process is guaranteed to be conservative, i.e., it provides an
over approximation of the concrete MLP/SVR. In this way, when the SMT solver proves
that the response of the abstract MLP/SVR cannot exceed a stated bound as long as the
input values satisfy given preconditions, we can certify that the concrete MLP/SVR has
the same property. On the other hand, if a counterexample is found, then it is either an
artefact of the abstraction, or a true counterexample proving that the MLP/SVR is not
satisfactory in terms of safety. The former case calls for a refinement of the abstraction,
whereas the second may entail further training of the MLP/SVR.

The experimental assessment that we present considers SMT encodings obtained
from different verification problems. In the case of MLPs, the encodings are related to
control subsystems in the humanoids James [12] and iCub [13]. In the case of James,
measuring external forces using a single force/torque sensor placed along the kinematic
chain of the arm requires compensation of the manipulator dynamic, i.e., the contri-
bution of internal forces must be subtracted from sensor readings [14]. MLP-based
estimation of internal forces relies on angular positions and velocities of two shoulder
and two elbow joints, and takes into account components from gravity, Coriolis forces,
and manipulator inertia. In the case of iCub, we consider MLP-based extrapolation of
forward kinematics of its arms. In particular, we consider angular positions of three
shoulder, one elbow and three wrist joints as inputs, and end-effector positions as out-
puts. Finally, in the case of SVRs, we considered an artificial physical domain simulated
with V-REP [15], wherewith we simulate the task of applying the right amount of force
to send a ball into a goal in the presence of obstacles. We further assume that acquiring
input samples is expensive, so that active learning instead of batch learning is required.

The remainder of this paper is organized as follows. Section 2 gives background
notions on MLPs, SVRs, and SMT solvers. Section 3 summarizes the abstractions in-
troduced in [6–8] and introduces global, local and stability requirements. The state of
the art is presented in Section 4. Concluding remarks and open questions are presented
in Section 5.
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2 Preliminaries

2.1 Neural networks for regression

A Multi-Layer Perceptron (MLP) is a function ν : Rn → Rm obtained by feeding
n inputs through a network of neurons, i.e., computational units arranged in multiple
layers ending with m outputs, where each neuron is characterized by an activation
function σ : R → R. We consider networks with only three cascaded layers, namely
input, hidden, and output layer, so that there are always n neurons in the input layer, and
m neurons in the output layer. Let x = (x1, . . . , xn) be the input signal to the network
ν. We assume that input neurons compute the activation function σ(r) = r, i.e., their
task is simply to pass forward the components of the input signal. Let h denote the
number of hidden neurons, then the input of the j-th hidden neuron is

rj =

n∑

i=1

ajixi + bj j = {1, . . . , h} (1)

where aji is the weight of the connection from the i-th neuron in the input layer (1 ≤
i ≤ n) to the j-th neuron in the hidden layer, and the constant bj is the bias of the j-th
neuron. We denote with A = {a11, a12, . . . a1n, . . . , ah1, ah2, . . . ahn} and with B =
{b1, . . . , bh} the corresponding sets of weights. The activation function σh computed
by hidden neurons is a non-constant, bounded and continuous function of its input.
According to [16] this guarantees that, in principle, ν will be capable of approximating
any continuous mapping f : Rn → Rm arbitrarily close. The input received by an
output neuron is

sk =

h∑

j=1

ckjσh(rj) + dk k = {1, . . . ,m} (2)

where ckj denotes the weight of the connection from the j-th neuron in the hidden layer
to the k-th neuron in the output layer, while dk represents the bias of the k-th output
neuron – as before, C and D denote the corresponding sets of weights. The output
signal of the MLP is a vector ν(x) = (σo(s1), . . . , σo(sm)). The activation function of
output neurons can be chosen as σo = σh, so that each output of ν is constrained to the
range of σh, or as σo(r) = r, so that ν(x) = (s1, . . . , sm).

The key aspect of MLPs is that the sets of parameters A,B,C,D are not manually
determined but are computed using an iterative optimization procedure known as train-
ing. Let R be a training set comprised of t pairs R = {(x1, y1), . . . (xl, yl)} where for
each 1 ≤ i ≤ l, the vector xi is some input signal (pattern) and yi is the correspond-
ing output signal (label). If we assume that R is generated by some unknown function
f : Rn → Rm, then we can see training as a way of extrapolating the unknown function
f from the signals in the training set. The goal of training is to determine the parameters
A,B,C,D which maximize similarity between ν(x) and y for each pair (x, y) ∈ R.

2.2 Kernel-based methods for regression

Support Vector Regression (SVR) is a supervised learning paradigm, whose mathemat-
ical foundations are derived from Support Vector Machine (SVM) [17–19]. Suppose
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we are given a set R = {(x1, y1) . . . (xl, yl)} ⊂ X × R, where X is the input space
with X = Rd. In the context of ε-SVR [20] for the linear case, our aim is to compute a
function ν(x) which, in case of ε-SVRs, takes the form

ν(x) = w · x+ b with w ∈ X , b ∈ R (3)

such that ν(x) deviates at most ε from the targets yi ∈ T with ‖w‖ as small as possible.
A solution to this problem is presented in [19], where slack variables ξi, ξ∗i are intro-
duced to handle otherwise unfeasible constraints. The formulation of the optimization
problem stated above then becomes:

minimize
1

2
‖w‖2+C

l∑

i=1

(ξi + ξ∗i )

subject to yi − w · xi − b ≤ ε+ ξi

w · xi + b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(4)

The constantC > 0 determines the trade-off between the “flatness” of f , i.e., how small
is ‖w‖, and how much we want to tolerate deviations greater than ε.

In order to solve the above stated optimization problem one can use the standard
dualization method using Lagrange multipliers. The Lagrange function writes

L :=
1

2
‖w‖2+C

l∑

i=1

(ξi + ξ∗i )−
l∑

i=1

(ηiξi + η∗i ξ
∗
i )

−
l∑

i=1

αi(ε+ ξi − yi + w · xi + b)−
l∑

i=1

α∗i (ε+ ξ∗i − yi − w · xi − b) (5)

where ηi, η∗i , αi, α
∗
i are Lagrange multipliers. Solving the dual problem allows to rewrite

(3) as

ν(x) =

l∑

i=1

(αi − α∗i )xi · x+ b (6)

The algorithm can be modified to handle non-linear cases. This could be done by map-
ping the input samples xi into some feature space F by means of a map Φ : X → F .
However this approach can easily become computationally unfeasible for high dimen-
sionality of the input data. A better solution can be obtained by applying the so-called
kernel trick. Observing eq. (6) it is possible to see that the SVR algorithm only de-
pends on dot products between patterns xi. Hence it suffices to know the function
K(x, x′) = Φ(x) · Φ(x′) rather than Φ explicitly. By introducing this idea the opti-
mization problem can be rewritten, leading to the non-linear version of (6):

ν(x) =

l∑

i=1

(αi − α∗i )K(xi, x) + b (7)

where K(·) is called kernel function as long as it fulfills some additional conditions —
see, e.g., [10] for a full characterization of K.
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2.3 Satisfiability Modulo Theory

A Constraint Satisfaction Problem (CSP) [21] is defined over a constraint network, i.e.,
a finite set of variables, each ranging over a given domain, and a finite set of constraints.
Intuitively, a constraint represents a combination of values that a certain subset of vari-
ables is allowed to take. In this paper we are concerned with CSPs involving linear
arithmetic constraints over real-valued variables. From a syntactical point of view, the
constraint sets that we consider are built according to the following grammar:

set→ { constraint }∗ constraint
constraint→ ({ atom }∗ atom)

atom→ bound | equation
bound → value relop value
relop→ < | ≤ | = | ≥ | >

value→ var | - var | const
equation→ var = value - value

| var = value + value
| var = const · value

where const is a real value, and var is the name of a (real-valued) variable. Formally, this
grammar defines a fragment of linear arithmetic over real numbers known as Quantifier-
Free Linear Arithmetic over Reals (QF LRA) [11].

From a semantical point of view, let X be a set of real-valued variables, and µ be
an assignment of values to the variables in X , i.e., a partial function µ : X → R. For
all µ, we assume that µ(c) = c for every c ∈ R, and that relopµ, +µ, −µ, ·µ denote the
standard interpretations of relational and arithmetic operators over real numbers. Linear
constraints are thus interpreted as follows:

– A constraint (a1 . . . an) is true exactly when at least one of the atoms ai with i ∈
{1, . . . , n} is true.

– Given x, y ∈ X ∪ R, an atom x relop y is true exactly when µ(x) relopµ µ(y)
holds.

– Given x ∈ X , y, z ∈ X ∪ R, and c ∈ R
• x = y � z with � ∈ {+,−} is true exactly when µ(x) =µ µ(y)�µ µ(z),
• x = c · y is true exactly when µ(x) =µ µ(c) ·µ µ(y),

Given an assignment, a constraint is thus a function that returns a Boolean value. A con-
straint is satisfied if it is true under a given assignment, and it is violated otherwise. A
constraint network is satisfiable if it exists an assignment that satisfies all the constraints
in the network, and unsatisfiable otherwise.

While different approaches are available to solve CSPs, this work is confined to
Satisfiability Modulo Theories (SMT) [11]. SMT is the problem of deciding the satis-
fiability of a first-order formula with respect to some decidable theory T . In particular,
SMT generalizes the Boolean satisfiability problem (SAT) by adding background theo-
ries such as the theory of real numbers, the theory of integers, and the theories of data
structures (e.g., lists, arrays and bit vectors). The idea behind SMT is that the satisfi-
ability of a constraint network can be decided in two steps. The first one is to convert
each arithmetic constraint to a Boolean constraint, while the second one is to check
the consistency of the assignment in the corresponding background theory. Checking
that the Boolean assignment is feasible in the underlying mathematical theory can be
performed by a specialized reasoning procedure (SMT solvers) – any procedure that
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computes feasibility of a set of linear inequalities in the case of QF LRA. If the consis-
tency check fails, then a new Boolean assignment is requested and the SMT solver goes
on until either an arithmetically consistent Boolean assignment is found, or no more
Boolean assignments can be found.

3 SMT-based abstraction and verification techniques

3.1 Abstraction for MLPs and SVRs

Research on learning with safety requirements has the objective of verifying trained
MLPs/SVRs, i.e., guarantee that, given some input preconditions, the mapping ν re-
spects stated output postconditions. In principle, this check can be automated in a suit-
able formal logic L by proving

|=L ∀x (π(x)→ ϕ(ν(x))) (8)

where π and ϕ are formulas in L expressing preconditions on input signals and post-
conditions on output signals, respectively. Most often, activation functions for MLPs
are non-linear and transcendental and so are kernels for SVRs, which makes (8) unde-
cidable if L is chosen to be expressive enough to model such functions – see, e.g., [22].
In [6, 8] this problem is tackled introducing an abstraction framework. Given ν and
properties π, ϕ, a corresponding abstract model ν̃ and abstract properties π̃, ϕ̃ are de-
fined so that

|=L′ ∀x′ (π̃(x′)→ ϕ̃(ν̃(x′))) (9)

is decidable, and (8) holds whenever (9) holds. If this is not the case, then there is some
abstract input x′ such that π̃(x) is satisfied, but the abstract output ν̃(x′) violates ϕ̃.
There are two cases:

– If a concrete input x can be extracted from x′ such that also ν(x) violates ϕ, then
x′ is a realizable counterexample, and ν fails to uphold (8).

– On the other hand, if no concrete input x can be extracted such that ν(x) violates
ϕ, then x′ is a spurious counterexample.

Spurious counterexamples arise because an abstract MLP/SVR ν̃ is “more permissive”
than its concrete counterpart ν. In this case, a refinement is needed, i.e., a new ab-
straction “tighter” than ν̃ must be computed and checked. We call this abstraction-
refinement loop Counter-Example Triggered Abstraction Refinement (CETAR) in [6].
Briefly stated, the main difference between CETAR and classical Counter-Example
Guided Abstraction Refinement (CEGAR) is that, in the latter counterexamples are used
as a basis to refine the abstraction, whereas in the former counterexamples are merely
triggering the refinement, without being involved in computing the refinement. While
there is no theoretical guarantee that the CETAR loop terminates, in practice it is ex-
pected that a network is declared safe or a realizable counterexample is found within a
small number of refinement steps.

Details about the definition of ν̃ for MLPs in such a way thatL′=QF LRA, as well as
details of preconditions and postconditions to be checked, with related abstractions, are
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Fig. 1. Interval abstraction of a Gaussian kernel.

provided in [6, 7]. In the following, for the sake of explanation, we briefly summarize
how to encode SVR verification in a corresponding QF LRA problem as shown in [8].
In particular, our experimental analysis focuses on radial basis function (RBF) kernels

K(xi, x) = e−γ‖x−xi‖2 with γ =
1

2σ2
(10)

Given a SVR, we consider its input domain to be defined as I = D1× . . .×Dn, where
Di = [ai, bi] with ai, bi ∈ R, and the output domain to be defined as O = [c, d] with
c, d ∈ R. A concrete domain D = [a, b] is abstracted to [D] = {[x, y] | a ≤ x ≤ y ≤
b}, i.e., the set of intervals inside D, where [x] is a generic element.

To abstract the RBF kernel K, we observe that (10) corresponds to a Gaussian
distribution G(µ, σ) with mean µ = xi — the i-th support vector of ς — and variance
σ2 = 1

2γ . Given a real-valued abstraction parameter p, let us consider the interval [x, x+

p]. It is possible to show that the maximum and minimum of G(µ, σ) restricted to [x, x+
p] lie in the external points of such interval, unless µ ∈ [x, x + p] in which case the
maximum of G lies in x = µ. The abstraction K̃p is complete once we consider two
points x0, x1 with x0 < µ < x1 defined as the points in which G(xi) � G(µ) with
i ∈ 0, 1, where by “a � b” we mean that a is at least one order of magnitude smaller
than b 3. We define the abstract kernel function for the i-th support vector as

K̃p([x, x+p]) =





[min(G(x),G(x+ p)),G(µ)] if µ ∈ [x, x+ p] ⊂ [x0, x1]

[min(G(x),G(x+ p)),max(G(x),G(x+ p))] if µ /∈ [x, x+ p] ⊂ [x0, x1]

[0,G(x0)] otherwise
(11)

According to eq. (11), p controls to what extent K̃p over-approximates K since large
values of p correspond to coarse-grained abstractions and small values of p to fine-
grained ones. A pictorial representation of eq. (11) is given in figure 1. The abstract

3 Given a Gaussian distribution, 99.7% of its samples lie within ±3σ. In this case however, our
RBF formulation does not include any normalization factor and stopping at ±3σ would not
be sufficient to include all relevant samples. The heuristics described in the text was therefore
adopted to solve the problem.
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SVR ς̃p is defined rewriting equation (7) as

ς̃p =

l∑

i

(αi − α∗i )K̃p(xi, x) + b (12)

where we abuse notation and use conventional arithmetic symbols to denote their inter-
val arithmetic counterparts.

It is easy to see that every abstract SVR ς̃p can be modeled in QF LRA. Let us con-
sider a concrete SVR ς : [0, 1]→ (0, 1), i.e., a SVR trained on T = {(x1, y1) . . . (xl, yl)}
with xi ∈ [0, 1] ⊂ R and yi ∈ (0, 1) ⊂ R. The abstract input domain is defined by:

xi ≥ 0 xi ≤ 1 (13)

The coefficients and the intercept seen in equation (12) carry over to ς̃p and are defined
by constraints of the form

αi − αi∗ = 〈αi − αi∗〉 b = 〈b〉 (14)

where the notation 〈·〉 represents the actual values obtained by training ς . To complete
the encoding, we must provide constraints that correspond to (11) for all the support
vectors of ς . Assuming p = 0.5, the encoding for the i-th kernel writes

if (x ≤ x0)
then (Ki ≥ 0) (Ki ≤ G(x0))

. . .
if (0 < x)(x ≤ 0.5)

then (Ki ≥ min(G(0),G(0.5)) (Ki ≤ max(G(0),G(0.5))
. . .
if (x1 < x)

then (Ki ≥ 0) (Ki ≤ G(x0))
The expression “if t1 . . . tm then a1 . . . an” is an abbreviation for the set of con-

straints
(¬t1 . . .¬tma1)

. . .
(¬t1 . . .¬tman)

(15)

where t1, . . . , tm and a1, . . . an are atoms expressing bound on variables, and ¬ is
Boolean negation (e.g., ¬(x < y) is (x ≥ y)). Finally, the output of the SVR is just

f(x) = 〈α1 − α∗1〉Ki(x1, x) + . . .+ 〈αn − α∗n〉Kn(xn, x) + 〈b〉 (16)

with x1, . . . , xn being the support vectors of ς

3.2 Problems in safety related learning

As mentioned previously, verification of MLPs and SVRs amounts to answer a logi-
cal query. In this subsection, we summarize the three different verification problems –
namely, global safety, local safety, and stability – as introduced in [7], as well as the
different ways of defining preconditions π and postconditions ϕ.
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Global safety This property was considered in [6] for the first time, and requires that a
trained model ν : I → O with n inputs and m outputs fulfills the condition

∀x ∈ I, ∀k ∈ {1, . . . ,m} : νk(x) ∈ [lk, hk] (17)

where lk, hk ∈ Ek are constants chosen to define an interval wherein the k-th compo-
nent of ν(x) is to range – we call them safety thresholds after [6]. It is easy to see how
(17) can be expressed using the notation of (8) by defining

– π(x) as a predicate which is true exactly when x ∈ I, and
– ϕ(y) as a predicate which is true exactly when y ∈ B where B = [l1, h1] × . . . ×

[lm, hm].

We say that an MLP/SVR ν is globally safe if condition (8) holds when π and ϕ are
defined as above. This notion of (global) safety is representative of all the cases in
which an out-of-range response is unacceptable, such as, e.g., minimum and maximum
reach of an industrial manipulator, lowest and highest percentage of a component in
a mixture, and minimum and maximum dose of a drug that can be administered to a
patient.

Local safety The need to check for global safety in MLPs can be mitigated using
bounded activation functions in the output neurons to “squash” their response within
an acceptable range, modulo rescaling. In principle, the same trick could be applied to
SVRs as well, even if it is much less commonly adopted. A more stringent, yet neces-
sary, requirement is thus represented by “local” safety. Informally speaking, we can say
that an MLP/SVR ν trained on a datasetR of t patterns is “locally safe” whenever given
an input pattern x∗ 6= x for all (x, y) ∈ R it turns out that ν(x∗) is “close” to yj as long
as x∗ is “close” to xj and (xj , yj) ∈ R for some j ∈ {1, . . . , t}. Local safety cannot be
guaranteed by design, because the range of acceptable values varies from point to point.
Moreover, it is relevant in all those applications where the error of an MLP/SVR must
never exceeds a given bound on yet-to-be-seen inputs, and where the response of an
MLP must be stable with respect to small perturbations in its input in the neighborhood
of “known” patterns.

Stability While local safety allows to analyze the response of a network even in the
presence of bounded-output MLPs/SVRs, it suffers from two important limitations.

– It does not take into account the whole input domain, i.e., if a pattern falls out
the union of the input polytopes, then nothing can be said about the quality of the
response.

– It is tied to a specific training set, i.e., changing the set of patterns used to train the
network can change the response of the safety check.

These two limitations are important in practice, in particular when the availability of
training data is scarce so the chance of hitting “unseen” patterns is high, or when the
training set is very sparse so the chance of having large regions of uncovered input
space is high. One way to overcome these limitations is to keep the locality of the
check, i.e., small input variations must correspond to small output variations, but drop
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Family Overall Time (s) Hardness
N # EA ME MH

ICUB LOGI 720 504 68706.83 132 330 42
ICUB RAMP 36 35 3980.89 15 20 –
ICUB TANH 720 581 45618.63 257 296 28
JAMES LOGI 720 489 84699.24 70 378 41
JAMES RAMP 36 34 3101.20 10 23 1
JAMES TANH 720 559 86560.52 131 371 57

Table 1. Encoding-centric view of the results. The table consists of seven columns where we
report for each family their name in alphabetical order (column “Family”), the number of encod-
ings included in the family, and the number of encodings solved (group “Overall”, columns “N”,
“#”, respectively), the CPU time taken to solve the encodings (column “Time”), the number of
easy, medium and medium-hard encodings (group “Hardness”, columns “EA”, “ME”, “MH”).

the dependency from the training set, i.e., check the whole input space. Formally, given
a trained model ν : I → O we define stability as follows

∀x1, x2 ∈ I : ||x1 − x2||≤ δ
→ ||ν(x1)− ν(x2)∗||≤ ε (18)

where δ, ε ∈ R+ are two arbitrary constants which define the amount of variation that
we allow in the input and the corresponding perturbation of the output. We observe
that condition (18) requires non linear arithmetic to express the scalar product of the
difference vectors. In other words, once fixed x1, we have that x2 must be contained
in an hypersphere of radius δ centered in x1 – and similarly for ν(x1), ν(x2) and ε.
An overapproximation of such hypersphere, and thus a consistent abstraction of (18), is
any convex polyhedra in which the hypersphere is contained. The degree of abstraction
can be controlled by setting the number of facets of the polyhedra, and such an abstract
condition can be expressed in QF LRA.

As reported in [7] stability turns out to be the hardest condition to check for SMT
solvers, so in the following we will focus on this one.

4 State of the art

4.1 Experiments with batch learning and MLPs

Considering the experimental results reported in [7], stability turned out to be the hard-
est condition to check for SMT solvers, and in Table 1 we report a summary of that
experimental analysis. We consider both James and iCub case studies in the case of
MLPs with different activation functions, namely logistic (logi), bounded ramp (ramp),
and hyperbolic tangent (tanh) functions. In order to avoid confining the results to a sin-
gle SMT solver, the number of encodings solved and the cumulative time taken for each
family is computed considering the “SOTA solver”, i.e., the ideal SMT solver that al-
ways fares the best time among all the solvers considered. An encoding is thus solved
if at least one of the solvers solves it, and the time taken is the best among CPU times
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Fig. 2. Experimental setup in V-REP. In a field delimited by fences, a green ball is to be thrown
from one side into the goal (brown door) on the opposite side. An obstacle (grey wall) may be
placed inside the field in such a position that all or some straight shots will always be ineffective.

of the solvers that solved the encoding. The solvers involved in the experimentation
were the participants to the QF LRA track of the SMT Competition 2011 [23], namely
CVC [24] (version 4 1.0rc.2026), MATHSAT [25] (version 5), SMTINTERPOL [26] (ver-
sion 2.0pre), YICES [27] (v. 1.0.29, with smtlib2 parser), and Z3 [28] (v. 3.0). In Table 1,
the encodings are classified according to their hardness with the following criteria: easy
encodings are those solved by all the solvers, medium encodings are those non easy
encodings that could still be solved by at least two solvers, medium-hard encodings are
those solved by one reasoner only, and hard encodings are those that remained unsolved.
Looking at the results, we observe that 2202 encodings out of 2952 were solved. With
“only” 75% of the encodings solved, we confirm that this suite contains the most diffi-
cult formulas of the whole test set. In particular, 615 encodings are easy, 1418 medium,
while 169 are medium-hard. For more details about the results, we refer the reader
to [7].

4.2 Experiments with active learning and SVRs

Experimental Setup A pictorial representation of the case study we consider is shown
in Figure 2. In this domain setup, a ball has to be thrown in such a way that it goes
through a goal, possibly avoiding obstacles present in the environment. The learning
agent interacting with the domain is allowed to control the force f = (fx, fy) applied
to the ball when it is thrown. Given that the coordinate origin is placed at the cen-
ter of the wall opposing the goal — see Figure 2 — we chose fx ∈ [−20, 20]N and
fy ∈ [10, 20]N , respectively. The range for fx is chosen in such a way that the whole
field, including side walls, can be targeted, and the range for fy is chosen so that the ball
can arrive at the goal winning pavement’s friction both in straight and kick shots. The
collision between the side walls and the ball is completely elastic. In principle, the ob-
stacle can be placed everywhere in the field, but we consider only three configurations,
namely (a) no obstacle is present, (b) the obstacle occludes straight line trajectories
— the case depicted in Figure 2 — and (c) the obstacle partially occludes the goal, so
that not all straight shots may go through it. The domain of Figure 2 is implemented
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Algorithm Mean STD Median IQR
Straight and Kick shots

Random 97.6 13.68 100.0 –
QBC 88.27 24.28 100.0 –
DB 95.53 19.49 100.0 –

Straight shots
Random 40.06 11.7364 40.0 5.0

QBC 15.05 3.7275 15.0 3.0
DB 14.75 0.8275 15.0 1.0

Kick shots
Random 16.3 18.29 12.0 8.25

QBC 15.9 25.12 3.0 19.25
DB 9.28 13.51 7.0 5.0

Algorithm Mean STD Median IQR
Case a

Random 97.6 13.68 100.0 –
QBC 88.27 24.28 100.0 –
DB 95.53 19.49 100.0 –

Case b
Random 64.07 36.18 69.0 71.0

QBC 67.22 43.44 100.0 –
DB 63.63 39.49 100.0 –

Case c
Random 91.94 23.26 100.0 –

QBC 85.46 24.67 100.0 –
DB 93.13 23.35 100.0 –

Table 2. Evaluation of the active learning algorithms. Left: statistics on the number of AL runs
needed when no obstacle is present (case a), using different subsets of the feasible trajectories.
“Mean” and “STD” are the sample mean and standard deviation, respectively; “Median” is the
50%-percentile, and IQR is the difference between 75%-percentile and 25%-percentile. When
the median coincides with the maximum number of allowable runs, the IQR value cannot be
computed (denoted with “–”). Right: Statistics on the number of AL runs needed for cases a, b
and c,

using the V-REP simulator [15]. Concrete SVRs are trained using the Python library
SCIKIT-LEARN, which in turn is based on LIBSVM [29]. Verification of abstract SVRs
is carried out using Mathsat [30]. The Python library GPy [31] is used to train Gaussian
process regression.

Results We train SVRs on a dataset of n samples built as T = {(fi, yi), . . . , (fn, yn)}
where fi = (fxi, fyi) is the force vector applied to the ball to throw it, and yi is the
observed distance from the center of the gate, which is also the target of the regression.
Obviously, the regression problem could be extended, e.g., by including the initial posi-
tion of the ball, but our focus here is on getting the simplest example that could lead to
evaluation of different active learning paradigms and verification thereof. Preliminary
tests were performed in an obstacle-free environment, using specific subsets of all the
feasible trajectories. Three algorithms were compared, namely a random strategy for
adding new samples to the learning set, the query by committee algorithm and the one
proposed by Demir and Bruzzone [32] — listed in Table 2 as “Random”, “QBC” and
“DB”, respectively. Each test episode consists in adding samples to the model, and it
ends when either the Root Mean Squared Error (RMSE) is smaller than a threshold
(here 0.2), or when at most 100 additional samples are asked for. Table 2 suggests that
when the learning problem involves one single class of shots (e.g., only straight shots),
the algorithms provide better results. Indeed, when both straight and kick shots are pos-
sible, all three algorithms require more than 100 additional samples in at least 50% of
the runs in order to reach the required RMSE. We conducted further experiments, this
time considering the three cases (a), (b), and (c) described before, and the full set of
feasible trajectories in each case. The results obtained, shown in Table 2 (right), con-
firm the observation made on Table 2 (left). The best results are indeed obtained for
case (b), wherein the obstacle is placed in such a way that only kick shots are feasible,
thus turning the learning problem into a single-concept one.
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5 Open questions

In this work we have summarized the state of the art in the topic of learning with safety
requirements. The promise of this research is to make data-driven models fit enough
to be deployed in safety-related context, e.g., adaptive agents operating in physical do-
mains. However, several questions should be answered before the techniques surveyed
in this paper can be pushed in practical applications with confidence in their effective-
ness. Currently, we can consider the following issues:

– SMT solvers could deal with the majority of encodings in a reasonable amount of
time; still, there might be room for improvement and scalability with respect to the
size of the learning problems must be assessed.

– Safety requirements have been considered for batch learning with MLPs and active
learning with SVRs; it would be worth investigating whether active learning with
MLPs and batch learning with SVRs can give improved results in terms of learning
and verification.

– There are learning techniques which are both very effective and natively provide
(statistical) bounds on their prediction; Gaussian process regression (GPR) [33] is
one such technique, with a fairly considerable record of success stories; it would
be interesting to compare the level of confidence in the prediction given by GPR
on one side, and the strict guarantees provided by MLPs/SVRs checked with SMT
solvers on the other.

– Applications in which learning techniques ought to provide safety requirements are
diverse, and include learning through reinforcement with continuous rather than
discrete state-action-space representations — see [34] for a discussion. One im-
portant issue is thus the feasibility of techniques that we surveyed in such fields,
wherein learning is part of a larger system devoted to program adaptive agents.

Our future works will focus on addressing the above open issues and whether the pro-
posed methodologies can scale to real-world problems, possibly posing verification of
learning models as a challenge problem for the SMT research community.
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