
Preprocessing versus Search Processing for Constraint
Satisfaction Problems

Richard J. Wallace

Insight Centre for Data Analytics, Department of Computer Science,
University College Cork, Cork, Ireland

email: richard.wallace@insight-centre.org

Abstract. A perennial problem in hybrid backtrack CSP search is how much
local consistency processing should be done to achieve the best efficiency. This
can be divided into two separate questions: (1) how much work should be done
before the actual search begins, i.e. during preprocessing?, and (2) how much
of the same processing should be interleaved with search? At present there are
two leading approaches to establishing stronger consistencies than the basic arc
consistency maintenance that is done in most solvers. On the one hand there are
various kinds singleton arc consistency that can be used; on the other there are
several variants of restricted path consistency. To date these have not been com-
pared directly. The present work attempts to do this for a variety of problems,
and in so doing, it also provides an empirical evaluation of the preprocessing
versus search processing issue. Comparisons are made using the domain/degree
and domain/weighted degree variable ordering heuristics. In general, it appears
that preprocessing with higher levels of consistency followed by hybrid-AC pro-
cessing (i.e. MAC) gives the best results, especially when the weighted degree
heuristic is used. For problems with n-ary constraints, this difference seems to be
even more pronounced. In some cases, higher levels of consistency maintenance
established during preprocessing leads to performance gains over MAC of several
orders of magnitude.

1 Introduction

Many combinatorial problems can be represented as networks of overlapping relations.
These include problems in such areas as scheduling, configuration, and transportation
as well as logic puzzles and problems in computer vision. Many of these problems can
be viewed as labelling problems in which there is a set of variables, each of which
must be assigned a label, and k-tuples of labellings must satisfy the stipulated relations
among subsets of variables. (Labels are usually called values, so that is the term that
will be used from now on.) In most cases, such problems can be represented with a
simple scheme known as the constraint satisfaction problem, or CSP [5, 8].

All effective complete algorithms for solving CSPs rely on depth-first backtrack
search where some form of local consistency is performed after each new assignment
(and sometimes after retracting an assignment as well). These are called hybrid search
algorithms. Local consistency refers to consistency with respect to the values assigned
to specified subsets of variables, while global consistency refers to consistency with

89



respect to all relations that have been specified simultaneously. The former is used in
order to reduce the number of possible values that need to be considered, since if a value
cannot meet the requirement of local consistency then it cannot meet global consistency
requirements either. Given this state of affairs, research has focused on two areas where
performance can be improved by using alternative algorithms for local consistency.
These are,

1. The use of stronger forms of local consistency when a problem is “preprocessed”
before beginning the actual backtrack search,

2. The use of stronger forms of local consistency for interleaving with search assign-
ments.

(There is also the important question of how to make certain heuristic decisions, but
here this topic is finessed by using two heuristics for variable ordering that are known
to be very effective for a variety of problems.)

At this time, the most popular form of hybrid search employs arc consistency (AC)
both for preprocessing the problem and for interleaved local consistency. This proce-
dure is called maintained arc consistency (MAC) [6], since this is the degree of con-
sistency that is maintained throughout search. Arc consistency simply refers to the fact
that for every possible value of every variable in the problem and for every relation that
that variable is involved in, there is at least one set of values that satisfies that relations
and which includes that value.

During the past several years alternative forms of consistency have been proposed,
for either preprocessing or search (or both), some of which are very promising. Gener-
ally speaking, two main sorts of strategies have been considered. Their selling point is
that algorithms in both groups are provably superior to AC in that they always delete as
many or more values under the same conditions. But at the same time they are always
more expensive to compute. Hence, hybrids based on these algorithms have not in gen-
eral proven to be superior to MAC in practice, although counter-claims have been made
and some are still ‘on the table’ (e.g. [7]).

The first group includes algorithms based on path consistency (PC). PC extends
arc consistency by considering values in pairs of variables and determines whether this
2-tuple can be extended in a consistent fashion to any other variable. Although full
path consistency has proven to be much too expensive, various forms of “restricted”
path consistency have been proposed that efficient enough to be competitive. These are
described in the next section.

The second group includes algorithms based on singleton arc consistency (SAC).
The basic idea behind these algorithms is to reduce the set of possible labels associated
with a variable to a singleton before establishing arc consistency. When this is done for
each value in the problem, the resulting problem is singleton arc consistent. In addition
to SAC, there are other forms of singleton arc consistency based on the neighbourhood
of a variable. These are called neighbourhood SAC (NSAC), and more generally k-
neighbourhood SAC (k-NSAC, defined below).

To my knowledge, there has been no serious attempt as yet to compare these various
approaches, nor to carefully test the alternative strategies of enhancing preprocessing
alone with a stronger local consistency algorithm versus trying to enhance search itself
with stronger consistencies. The purpose of the present work is to contribute to this

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

90



analysis. Here, we consider MAC as well as other hybrid algorithms, combined with
different levels of preprocessing. One group involves SAC-based methods, either full
SAC or some form of neighbourhood SAC [10, 11]. In most cases either full SAC or the
most reduced form of neighbourhood SAC was tested. In what follows, an algorithm
that maintains full SAC will be referred to as MSAC, while an algorithm that maintains
NSAC will be referred to as MNSAC.

For path consistency algorithms, based on both the literature and my own experi-
ence, two forms of restricted path consistency (RPC) were chosen, called maxRPC and
(r)RPC3 [9, 7].

Here, we consider both binary problems, where all of the algorithm can be used,
and problems with n-ary constraints (both random and structured, including problems
with global constraints). Since to my knowledge there are no PC-based algorithms for
the latter types of problems, this part of the study will necessarily be restricted to SAC-
based algorithms. Extensions of the latter to handle problems with n-ary constraints
have been described in earlier papers [11, 12].

The next section gives general background concepts and definitions, including a dis-
cussion of NSAC and an algorithm for establishing it. Section 3 gives brief descriptions
of the algorithms used in this work. Section 4 describes methods of testing. Sections 5
and 6 give the experimental results for random binary and structured problems, respec-
tively. Section 7 gives the results for non-binary problems, including problems with
global constraints. Section 8 gives conclusions. (Some of the present results are drawn
from an RCRA 2014 workshop paper on SAC and NSAC algorithms, although they
were not included in a subsequent journal article.)

2 Background Concepts

A constraint satisfaction problem (CSP) is defined as a tuple, (X,D,C). X is a set
X1, X2 . . . Xn of variables. D is composed of sets of values (called “domains”), such
that domain Di is associated with variable Xi. C represents the set of relations that
must be satisfied. Each member of C is a tuple of the form (Y,R) called a “constraint”.
For a given constraint Ci, Yi is the set of variables associated with it, which is called
the “scope” of that constraint, and Ri is the relation. As usual, the latter is a subset of
a Cartesian product, in this case the product of the domains of Y , the variables in the
scope.

Solving a constraint satisfaction problem means finding one or more solutions; these
are assignments of values to variables, which form a mapping so that each variable in
the problem has an assigned value and all constraints are “satisfied” (i.e. for all Ci,
the mapping from variables in Yi to values in their respective domains is an element in
relation Ri).

In problems with binary constraints, arc consistency (AC) refers to the property that
for every value a in the domain of variable Xi and for every constraint Cij with Xi

in its scope, there is at least one value b in the domain of Xj such that (a,b) satisfies
that constraint. For non-binary, or n-ary, constraints generalized arc consistency (GAC)
refers to the property that for every value a in the domain of variable Xi and for every
constraint Cj with Xi in its scope, there is a valid tuple that includes a.

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

91



Singleton arc consistency, or SAC, is a form of AC in which the just-mentioned
value a, for example, is considered the sole representative of the domain of Xi. If AC
can be established for the problem under this condition, then it may be possible to find a
solution containing this value. On the other hand, if AC cannot be established then there
can be no such solution, since AC is a necessary condition for there to be a solution,
and a can be discarded. If this condition can be established for all values in problem P ,
then the problem is singleton arc consistent. (Obviously, SAC implies AC, but not vice
versa.)

Neighbourhood SAC (NSAC) establishes SAC with respect to the neighbourhood
of the variable whose domain is a singleton. Specifically, for each value in each domain,
the subgraph formed by all constraints whose scopes are included in the neighbourhood
of that variable (including the singleton variable itself) is made arc consistent. The
notion of neighbourhood can be extended to the idea of a k-neighbourhood, where k is
the maximum shortest path from the singleton variable to any of its k-neighbours. Thus
the original notion of neighbourhood becomes the 1-neighbourhood, while if we also
include all the neighbours of these neighbours we obtain the 2-neighbourhood, etc.

In binary CSPs, path consistency (PC) refers to the property that given a viable tuple
(a, b) between variablesXi andXj , then for any third variableXk in the problem, there
is a value c in the domain of the latter that will support both a and b. Restricted path
consistency (RPC) is a form of consistency in which the aforementioned PC property
holds whenever a value a in the domain of Xi has only one support in the domain of
Xj [1]. Max restricted path consistency (maxRPC) holds if for every value in every
domain, there is at least one path consistent value among its supports in every adjacent
constraint [3]. Recently a form of RPC based on an AC-3 style algorithm has been de-
scribed, together with a variant with a further restriction [7]. In the latter case, (called
restricted-restricted path consistency or rRPC3) when elements (here representing con-
straints between variables) have to be added back onto a queue for further processing,
one only adds back arcs adjacent to the variable whose domain was reduced. One does
not also add arcs between neighbouring variables, which is necessary to obtain full
RPC.

3 Description of Algorithms Used

3.1 General features

The algorithms used in these studies were based on AC, SAC [4], neighbourhood SAC
[10], maxRPC [3], RPC3 and rRPC3 [7]. Excepting AC, which was always used in
preprocessing and search, each of the other algorithms was used either for preprocessing
alone or for search as well.

In this paper an algorithm called NSACQ is used for neighbourhood SAC; in pre-
vious work, this was found to be the most efficient NSAC algorithm across a variety of
problem classes [10, 11]. (The following description applies to binary CSPs, although it
can be readily extended to the more general case.) NSACQ uses a list (a queue) of vari-
ables, whose domains are considered in turn; for a given variable,Xi and its domainDi,
each value is tested to see if arc consistency can be established in its neighbourhood. If

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

92



it cannnot, then the value is deleted, and in addition any neighbours of Xi that are not
currently on the queue are put back on. Unlike most SAC (or NSAC) algorithms, there
is no pure “AC phase” following a SAC-based value removal. The idea is that if a dele-
tion from the domain of Xi has any effect, it must affect the neighbours of Xi, and any
effects elsewhere in the problem can only occur through effects on these neighbours.

For this paper, the SAC algorithm was of the same form as the NSACQ algorithm.
The only difference is that when the queue is revised all variables in the problem are
put back on rather than just the neighbours.

In practice, NSAC is preceded by a step in which arc consistency is established,
although because of dominance this is not required to establish neighbourhood arc con-
sistency. This is done to rapidly rule out problems in which AC is sufficient to prove
unsatisfiability. It also eliminates values which are easily detected using a less expensive
arc consistency algorithm.

The RPC algorithms used were based on descriptions in the literature, although they
also involved adjustments to pre-existing MAC code. maxRPC was based on [3] and [9],
although AC and PC processing were more thoroughly interleaved than was apparently
the case in the latter. The RPC3 and rRPC3 followed the description and pseudocode
shown in [7] as closely as possible. They therefore use the find-two-supports strategy
to detect cases where restricted path consistency must be enforced (as in [3]). I.e. if a
second support cannot be found then, RPC must be checked.

Maintained neighbourhood SAC or NSAC (here called MSAC and MNSAC, re-
spectively) uses the same basic strategy as the MAC algorithms. In an initial pre-search
phase, SAC or neighbourhood SAC is established. Then after each decision, i.e. after
each assignment, this level of consistency is reestablished for the entire problem. This
means carrying out SAC or NSAC on every value in the domains of variables that have
not yet been assigned a value at that point in search.

Search with MNSAC (or MSAC) can be made more efficient thanks to the following
property. (Since the proof is straightforward, it is skipped for brevity.)

Proposition 1. Given previous processing that established neighbourhood SAC (resp.
SAC) in the problem, if an AC step following a (single) new assignment does not delete
any values, then neither will NSAC (resp. SAC).

Two heuristics were used for variable selection during search: minimum domain
over forward-degree (dom/fwd) and minimum domain over weighted-degree (dom/wtg).
In both cases forward-degree refers to the number of constraints with as yest unassigned
variables. Weighted-degree refers to weights accumulated due to domain wipeouts (re-
duction to zero values) during interleaved local consistency processing during search
[2].

3.2 Algorithms for problems with n-ary constraints

While arc consistency algorithms can be readily extended to problems with n-ary con-
straints, the same is not true for path consistency algorithms. Hence, in this section we
only consider the former. Previous work has shown how to extend neighbourhood SAC
algorithms to problems with n-ary constraints [11, 12]. However, the range of problems
tested was rather restricted, and the results were not that impressive.

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

93



Previous work has also shown that for any k, there are two variants of k-neighbour-
hood SAC algorithms. This difference depends on how one handles the general case of
two or more variables in the k-neighbourhood that share a constraint that also includes
non-neighbouring variables. The simplest approach is to ignore such constraints, keep-
ing to the basic requirement that only constraints contained within the neighbourhood
are considered. A more extended form of the algorithm is to consider such constraints,
but only with respect to the neighbouring variables; thus, the constraint is projected
on the neighbourhood sub-tuple. In [12] these were called the extended and restricted
forms, respectively, of k-NSAC, and this terminology will be followed here. So, I will
refer to them as k-NSACext and k-NSAClim.

This work also left an important question open. While both the extended and re-
stricted forms of NSAC form a hierarchy, where k-NSACx is dominated by k+1-NSACx
(x ∈ {lim, ext}) with respect to values deleted, it wasn’t immediatedly clear how the
two hierarchies were related. As it turns out, it is easy to prove that they form a single
hierarchy.

Proposition 2. For any value of k, k+1-NSAC dominates k-NSAC, unless both sub-
graphs include all the variables in the problem. This holds for both the extended and
limited forms of k-NSAC. In addition, k-NSACext dominates k-NSAClim and k+1-
NSAClim dominates k-NSACext. That is (except for the limiting condition just speci-
fied), if a value is removed by any form of k-NSAC then it will also be removed by any
form that dominates it, but the converse does not hold.

Proof Sketch. Previously this relation was shown to hold among the different forms of
k-NSAClim or k-NSACext, respectively, for k = 1, 2, . . .. Obviously, for any given k,
the extended form will dominate the limited form, since every constraint considered in
the latter case is considered in the former but not vice versa. Now, consider the case of k-
NSACext and k+1-NSAClim. Since the k+1 neighbourhood will include any constraint
that is partly inside and partly outside the k-neighbourhood, then any restriction that
occurs in the k form of NSAC because of this constraint will also hold in the k+1 form.
2

4 Methods for Testing Search Algorithms

Tests of the different maintained consistency algorithms were made with a variety of
test problems including both random CSPs and problems with various kinds of struc-
ture. Algorithms were implemented in Common Lisp, and experiments were run in the
XLispstat environment with a Unix OS on a Dell Poweredge 4600 machine (1.8 GHz).

4.1 Binary CSPs without definite structure

These were either homogeneous random problems or geometric problems with variable
support, as described in [10]. Due to time constraints, in the latter case only variants of
singleton arc consistency have been tested to date.

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

94



4.2 Binary CSPs with structure

These CSPs had constraints that were related to the magnitudes of the domain values.
Problems of various types have been tested, two of which are reported here.

Problems of the first type were radio frequency allocation problems (RLFAPs). The
values in the domains are numerical values ranging roughly between 15 and 800, al-
though only a small subset of the range is included. These problems have numerical
constraints of two types: Xi − Xj > k and Xi − Xj = k In other words, the differ-
ence (or distance) between certain pairs of variables must be either greater than some
constant k, or equal to k. For equality constraints k is always 128; moreover, such con-
straints hold between successive variable pairs, i.e. between X1 and X2, between X3

and X4, etc.
Results presented here are based on problems called graph problems at the Univer-

sité Artois website. 1 In one run four of these problems were used (called graph1-4 at
the website). In another test, problems were generated by taking one of the benchmarks
(graph1) and altering it by incrementing values of k in the constraint specifications. This
allowed us to generate problems with the same structure but with increasing degrees of
difficulty. A set of 25 problems based on the graph1 benchmark were generated with
a base increment of 18; all had solutions. Search with MAC gave a mean number of
search nodes of about 100,000.

Problems of the second type were random relop problems, where constraints were
relational operators, and the constraint graph was random. In all cases some of the
constraints were inequality constraints, which gives intractable problems. Again, due to
time constraints, these experiments only involved variants of singleton arc consistency.

4.3 Nary CSPs with structure

There were three goals in these experiments:

• to run tests based on benchmark problems,
• to use problems with global constraints,
• to generate problem sets where global constraint parameters could be varied, and

the number of problems could be arbitrarily large.

These goal were met by using benchmarks with binary constraints and adding global
constraints to them. In doing this, one criterion was that the global constraints seemed
to make sense in the context of the problem class. To this end, problem generators
were built to add global constraints to an existing RLFAP. In addition to the number of
constraints of each type to be added, the following parameters could be specified:

• Number of constraints of specified types.
• Range of constraint arities for each type.
• Values of parameters specific to a particular constraint, e.g. for at-least constraints,

the proportion of values to be considered was specified by the user, while for among
constraints, this and the proportion of possible domain values could be specified.

1 http://www.cril.univ-artois.fr/lecoutre/benchmarks.html

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

95



• The degree of acceptable overlap among the global constraints, specified as a range
within the [0,1] interval.

• The benchmark(s) to use.
• The number of problems to generate from each benchmark.

In the experiment reported here, each problem had ten global constraints of the
following types:

• 3 atmost constraints of arity 5
• 3 atleast constraints of arity 5
• 1 disjoint constraint of arity 10 (which includes the disjoint set)
• 3 among constraints of arity 5

Atmost constraints stipulate that at most k variables in the scope will have a specified
value. Atleast constraints stipulate that at least k will have a specified value. Disjoint
constraints stipulate a partition of two sub-scopes such that the two have no assignment
in common. Among constraints stipulate that k assignments within the scope will be
drawn from a specified set of possible values. In all cases, k was set to be ≤ 50% of
the scope. For among constraints the proportion of the union of domains of the scope
variables to be used was also ≤ 50%.

Fifty problems with these specifications were generated from a single benchmark,
the 200-variable RLFAP graph3 problem. (In its original form, this problem can be
solved by MAC without backtracking.) In this sample there were 11 satisfiable and 39
unsatisfiable problems.

5 Results with Random Binary Problems

5.1 Homogeneous random problems

The results shown in Table 1, for the pure algorithms, are typical for this type of prob-
lem. When used for preprocessing, there was little or no change in the search space for
these problems. At the same time, aside from maxRPC there was little or no change in
overall runtimes.

For maintained algorithms, it was found that RPC variants were appreciably faster
than algorithms based on neighbourhood SAC or full SAC. At the same time, they did
effect a considerable reduction in the size of the search tree, although not as much as
MNSAC. For rRPC, this was done with very little increase in time when compared with
MAC.

MSAC reduced the search size quite dramatically. However, both it and MNSAC
are considerably more expensive than either MAC or the RPC algorithms.

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

96



Table 1. Search Results for Homogeneous
Random Problems

dom/fwd dom/wtdg
algorithm nodes time nodes time

MAC 1621 4 1538 4
MAC/init xRPC 1621 12 1536 13
MAC/init RPC3 1621 4 1536 5
MAC/init rRPC3 1621 4 1542 5
MAC/init NSAC 1621 5 1540 5
MAC/init SAC 1621 5 1540 6
maxRPC 834 12 839 13
RPC3 973 11 968 11
rRPC3 983 5 983 5
MNSAC 751 38 775 37
MNSAC/init SAC 751 40 775 44
MSAC 83 51 83 56
Notes. <50,10,0.18,0.369> problems. Sample size 100.
Mean search nodes and runtimes (sec).

When the weighted degree heuristic is used with RPC- or SAC-based algorithms,
there is some question of which failures should be included in the weights, since for this
implementation at least constraint failures could be due either to AC or to higher-order
processing. For the results in the table, constraint weights were based on all failures.

5.2 Random problems with heterogeneous features

As noted before, these results are limited to SAC-based variants. Results for geomet-
ric problems with varying support are shown in Table 2. These are for the dom/fwd
heuristic only; with weighted degree these problems become very easy, so that extra
processing does not improve performance. It is possible that there are patterns of sup-
port for which effects can be shown, but this line of inquiry has not yet been pursued.

Table 2. Search Results for Random Geometric/
Varying-Support Problems

algorithm search nodes time # solved
MAC >70,105 668 292
MAC/init NSAC >30,610 167 295
MAC/init SAC >10,801 83 297
MNSACQ >10,078 ? 297
MNSACQ/init SAC 72 78 300
MSAC 69 171 300
Notes. 120-variable problems. Other parameters in text.
dom/fwd-degree heuristic. 1-million node cutoff. Sample
size 300. Mean search nodes and runtimes (sec).

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

97



These results show, first, that there are problems for which the extra processing re-
quired by MNSAC or MSAC can pay off both in number of nodes searched and overall
runtime, i.e. there are problems for which the search-tree-size/runtime tradeoff can be
finessed. Moreover, it is of interest that such results are found when some form of struc-
ture or non-randomness is introduced into the problem. At the same time, the results
with various forms of MNSAC show that it is sometimes difficult to judge beforehand
how much processing is required for substantial and reliable improvement.

6 Results with Structured Binary Problems

6.1 Radio frequency problems

Before reviewing the results, something needs to be said about the implementation of
the algorithms. Since all of the RPC algorithms tested here used residues (last support
found), an array was required to access this last support for a given value and constraint.
Now, since RLFAPs have domains with about 40 values ranging from about 15 to 800, it
is not practical (and often not feasible) to use the domain values themselves as indexes
into last-arrays, as one can with other kinds of problems. In my implementation, an
array was set up that allowed an index to be retrieved that was associated with a given
domain value, which was the ordinal position of that value in the set of all possible
domain values for that problem. This worked very efficiently during processing, adding
little to the time required to retrieve a residue.

The first set of problems tested were the four benchmark problems from the graph
series. Since these problems are so easy to solve, the only points of interest are the
efficiency and effectiveness (values deleted) in the preprocessing step. The results are
shown in Table 3. Times are for both preprocessing and search.

Table 3. Preprocessing Efficiency and Effectiveness
with Radio Frequency Problems

algorithm grph1 grph2 grph3 grph4
time rem time rem time rem time rem

AC 2 0 15 0 3 340 15 776
maxRPC 7 0 28 0 23 790 63 1614
RPC3 2 0 22 0 3 380 22 1040
rRPC3 2 0 22 0 3 380 22 1040
NSAC 64 0 402 0 162 1064 1062 2046
2-NSAC 110 0 517 0 468 1220 2770 2730
3-NSAC 133 0 584 0 1395 1240 7964 2844
SAC 137 0 636 0 1920 1274 13520 2876

Notes. RLFAP graph problems. Times (sec) and values
deleted.

Obviously, the RPC algorithms are much more efficient than the (N)SAC algo-
rithms; however the latter are able to remove more values. Note also that there is a

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

98



similar but less dramatic tradeoff when we compare RPC3 with maxRPC. We, there-
fore, have an interesting tradeoff: for easy problems such as these, any RPC algorithm
is preferable, but for much harder problems the greater effectiveness of SAC and NSAC
algorithms may pay off by reducing search. Note also that with respect to the number
of values deleted, the same dramatic differences hold even for NSAC.

A similar pattern of results was found for the small sample of hard RLFAPs. In
this case preprocessing with the RPC algorithms did not remove any values, while
both NSAC and SAC removed an average of 24 values. Overall times when MAC with
weighted degree was used to find solutions were about 590 seconds on average for the
RPC algorithms and 640 for the SAC-based algorithms.

6.2 Relop problems

Again, in this section only SAC-based strategies are discussed. The first set of problems
tested had 100 variables, with domain size equal to 20; graph density was 0.25. Search
results for the different algorithms are shown in Table 4. It can be seen that for the
dom/fwd heuristic, these problems are quite difficult for MAC, and in this case using
NSAC or SAC reduces the size of the search tree by three orders of magnitude. In
this case runtimes also improve by an order of magnitude. It can also be seen that
NSAC, used either as a preprocessing algorithm or as part of a maintained consistency
algorithm, gives the best runtimes.

At the same time, with a more effective variable ordering heuristic, the performance
of MAC is again improved to the extent that it becomes the most efficient algorithm.

Table 4. Search Results for Random Relop
Problems

dom/fwd dom/wtdg
algorithm nodes time nodes time

MAC 676,442 5948 656 11
MAC/init NSAC 6637 103 262 50
MAC/init SAC 732 698 – –
MNSAC 265 129 106 198
MNSAC/init SAC 143 731 – –
MSAC 101 503 100 1041
Notes. 100-variable relop problems based on ≥ and 6= constraints.
Sample size 100. Mean search nodes and runtimes (sec).

With larger problems of this type search with different forms of singleton arc consis-
tency can result in marked improvements in performance even when using the dom/wdg
heuristic. In this experiment, 150-variable problems were tested, again with a 50:50 mix
of 6= and≥ constraints in which constraints and constraint-type were selected randomly.
The domain size was always 20. Nine different densities were used, ranging from 0.1 to
0.5 in steps of 0.05. This spans a range that includes relatively easy problems with solu-
tions through the critical complexity region and far enough into the unsatisfiable region
that problems become easier to run to completion. The sample size at each density was
50.

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

99



0

101

102

103

104

105

0.1 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

i

CPU

times
(sec)

density

MAC
MACi

MNSAC
MSAC

Fig. 1. Runtimes for 150-variable relop problems. Log scale on ordinate. MACi refers to MAC
with initial NSAC; the curve is marked with an ”i” on the left.

Table 5. Mean Search Nodes for 150-Variable
Relop Problems

algorithm density
0.10 0.20 0.30 0.35 0.40 0.50

MAC 236 3460 798293 391134 138115 37813
MNSAC 159 217 3071 404 4 0
MSAC 150 150 134 2 0 0

MACiNSAC 179 1473 67388 13594 234 0
MACiSAC 163 505 5575 591 0 0
Notes. Mean search nodes for separate sets of 50 problems.

The results are shown in Figure 1. For densities 0.1-0.25 all problems had solutions,
and here MAC was the most efficient. But for the next density (41/50 problems had
solutions), MAC was appreciably less efficient than either of the other two, and this was
also true for density = 0.35 (no problems had solutions). For the very hardest problems
(densities 0.3 and 0.35) MSAC was in fact the most efficient; however, outside this
range it was much less efficient than the other two algorithms.

Table 5 shows that as problems of this type become more difficult, there are drastic
differences in search tree size for MAC as opposed to SAC-based algorithms. It also
shows that most unsatisfiable problems could be proven unsatisfiable during prepro-
cessing when either SAC or NSAC was used.

However, it was found that by using NSAC for preprocessing search could be re-
duced enough to make this combination competitive with MNSAC or MSAC. Prepro-
cessing with SAC was also tested, but while it led to a greater reduction in search nodes
(Table 4), overall runtime increased by a factor of two to ten depending on the problem
class.

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

100



7 Results for Problems with n-Ary Constraints

7.1 Random problems

Results for such problems were reported earlier in [11], so they will be described briefly
here. In the cases tested, both SAC and higher levels of NSAC were often able to prove
unsatisfiability when AC could not, thereby avoiding search. In other cases, the reduc-
tion in search effort was not large so overall there was only a small reduction in mean
search nodes, while the times tended to be greater than with AC alone.

7.2 RLFAPs with global constraints

In the test runs, MGAC-3 was used to search for a solution. The minimum domain over
forward degree heuristic was used for variable selection. Because of time limitations
and the difficulty of these problems for some procedures, a 250,000 node limit was
imposed

1000

2000

3000

AC NSAC 2-NSAC 3-NSAC SAC

CPU

times
(sec)

r r
r

preprocessing time

r restricted NSAC

Fig. 2. Overall runtimes for preprocessing plus search with MGAC-3 on RLFAPs with global
constraints. 0.25 M node limit.

Figure 2 shows mean runtimes across all 50 problems (including those for which the
algorithm reached the node limit). Table 6 shows the number of unsatisfiable problems
that could be proved unsatisfiable using the various kinds of preprocessing. Figure 3
shows the mean search nodes for the satisfiable subset. (Both forms of 3-NSAC and
SAC gave means of 273 nodes for these problems, which is not visible in the graph.)

Table 6. RLFAPs with Global Constraints:
Number Proved Unsat by Preprocessing

algorithm # algorithm #
AC 11 2-NSAC-e 37
NSAC-r 28 3-NSAC-r 39
NSAC-e 30 3-NSAC-e 39
2-NSAC-r 37 SAC 39
Notes. Maximum = 39.

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

101



These results show that for problems with these characteristics, MGAC alone is
not able to solve more than a fraction of them (16 out of 50). In contrast, most or all
problems could be solved when MGAC was preceded by some form of SAC-based
reasoning. However, only when preprocessing was carried out with 3-NSAC or full
SAC was it possible to solve all of the problems. (Note that 3-NSAC was appreciable
faster than full SAC, as shown in Figure 2.)

50,000

100,000

150,000

AC NSAC 2-NSAC 3-NSAC SAC

6

4 4

2

1

Mean

nodes

r

r

r

Fig. 3. RLFAPS with global constraints. Search nodes for 11 satisfiable problems using MGAC-3
after different types of preprocessing. Numbers above columns are cases where the 0.25 M node
limit was reached.

Another significant finding was that the restricted form of k-NSAC was nearly al-
ways as good as the extended form. Implementing the latter, while not much more
difficult, does involve revising code at a more intimate level than may be possible when
one is adding this algorithm to an existing solver. Clearly, however, this is not necessary
in most cases in order to obtain the benefits of the given level of consistency.

8 Conclusions

Although these results are preliminary, several patterns can be discerned that may be
more general. For both random and structured problems, RPC-based algorithms are
faster than SAC-based, sometimes appreciably so. At the same time, SAC-based meth-
ods are able to delete more domain values, thus effecting a greater reduction in the
size of the search tree. Clearly, then, if the problems are fairly easy, RPC methods will
be more effective overall, but for very difficult problems, SAC-based methods may be
superior (although this has not yet been demonstrated clearly for binary problems).

Together, these results show that while MAC is a very powerful general-purpose al-
gorithm, there are cases in which it is insufficient. This was found both for moderately
large relop problems as well as problems with global constraints. It is, therefore, sig-
nificant that these cases can sometimes be solved without inordinate expenditure when
stronger forms of consistency are employed.

At this point, it appears that the best use of more powerful forms of consistency
is during preprocessing. This was found in particular for the hard relop problems, and
results consistent with this were also found for hard RLFAPs as well as RLFAPs that

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

102



included global constraints. However, more evidence is required before one can be con-
fident that this is a general state of affairs.

Another noteworthy finding was that the variable ordering heuristic dom/wdg was
often able to compensate for MAC’s deficiencies in deleting values in comparison with
the SAC-based methods. In many cases this occurred to such a degree that MAC, while
being orders of magnitude less efficient than other methods when used in combination
with a simpler, non-adaptive heuristic, again became the most efficient method. This
shows that in discussing the benefits of lesser or greater degrees of consistency main-
tenance one must take account of the varying effectiveness of consistency strategies in
relation to the current state of the problem. Nonetheless, use of this heuristic did not
always result in adequate performance (e.g. hard relop problems), so that significant
benefits still accrued from extra preprocessing.

References

1. P. Berlandier. Improving domain filtering using restricted path consistency. In Conference
on Artificial Intelligence for Applications - CAIA-95, pp. 32–37.

2. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. In Sixteenth European Conference on Artificial Intelligence-ECAI’04, pp. 146–
150.

3. R. Debruyne and C. Bessière. From restricted path consistency to max-restricted path con-
sistency. In Principles and Practice of Constraint Programming-CP’97. LNCS No. 1330, pp.
312–326.

4. R. Debruyne and C. Bessière. Some practicable filtering techniques for the constraint sat-
isfaction problem. In Fifteenth International Joint Conference on Artifcial Intelligence –
IJCAI’97. Vol. 1, pp. 412–417.

5. R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
6. D. Sabin and E. C. Freuder. Contradicting conventional wisdom in constraint satisfaction. In

Principles and Pract. of Constraint Programming - PPCP’94, LNCS No. 874, pp. 10–20.
7. K. Stergiou. Restricted path consistency revisited. In Principles and Practice of Constraint

Programming - CP 2015. LNCS. No. 9255, pp. 419–428.
8. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
9. J. Vion and R. Debruyne. Light algorithms for maintaining max-RPC during search. In

Eighth Symposium on Abstraction, Reformulation, and Approximation - SARA2009, pp. 167–
174.

10. R. J. Wallace. SAC and neighbourhood SAC. AI Communications, 28(2):345–364, 2015.
11. R. J. Wallace. Neighbourhood SAC: Extensions and new algorithms. AI Communications,

29:249–268, 2016.
12. R. J. Wallace. Neighbourhood SAC for constraint satisfaction problems with non-binary

constraints. In Twenty-Ninth International FLAIRS Conference - FLAIRS-29, pp. 162–165,
2016.

R.J.Wallace Preprocessing versus search processing for constraint satisfaction problems

103


