
Study on the possibility of automatic conversion between

BusinessObjects Universes and Oracle Business Intelligence

Repositories

Olti QIRICI

Department of Informatics

Faculty of Natural Sciences, University of Tirana

Tirana, Albania

olti.qirici@fshn.edu.al

Abstract

The decision on which Business Intelligence
solution should be selected is very difficult.
Sometimes it is required to switch between
these solutions. Here we will try to check
the features that some commercial products
provide us, that help automize the process of
models creation. We will check for possible
mappings between these solutions toward a
final automized conversion process which
would simplify the process of products
selection without enhanced efforts on
models conversion. Both ways of
conversion have been investigated and are
feasible but currently it seams that one of
the automation ways is possible with least
effort.

Keywords — BI, BO, BusinessObjects, OBIEE,

universe, repository, automatic

1 Introduction

The process of selecting which Business
Intelligence tool will be used is not just a matter of
which technical solutions fits most to a current
situation. It is true mainly because all the possible BI
solutions, try to provide all those tools and
functionalities which are necessary for these systems.
Sometimes these tools might provide some extra
features which make it simple to perform some
operation. According to Turban et al [Tur11] there are
four main features which are prerequisites for a
system to be considered as a BI solution which are:

I. Data Warehouse
II. Business Analytics

a. Reports and queries
b. Data, Text and Web mining and other

sophisticated mathematical and statistical tools
III. Business Performance Management

IV. User Interface
Vast majority of business BI solution today has all

of them implemented. At least the products which we
are discussing here, have them all implemented.

So which might probably be the most important
reason for choosing a specific product could be the
price of a specific product or how strategically the
choice of a given product might be combined with
specific discounts on sales prices and favor a choice
over another. Generally BI products are quite
expensive which might make even small discounts
considerable.

Sometimes, enterprises prefer to choose one
solution over the other because during the process of
infrastructure transformation, it is required for the
sake of uniformity to switch between different
platforms. If a company or state enterprise decides to
change the technological providers, business
intelligence tools, which represent these
transformation from the end user prespective on
reporting and analysis, would not escape these major
changes, even for the reason of uniformity.

But BI models require a specific amount of time to
be developed. As each information technology
project, this time is divided in requirement
specification gathering, design of the solution,
development, testing and maintenance. When the
management changes strategy and product, of course
a migration of the BI model is needed. But not all
these steps have to be performed as a whole, while the
longest step during the migration might be the
development phase. In order to shorten this phase, it is
required to produce an automation tool which would
perform this transfer with little supervision required.
This automation could be both ways or single way
extracting information from a product and
recomposing it through feeding the other product. By
so doing, it would be simpler to facilitate the decision
on business intelligence solution migration without
major changes.

Even partial migration would be welcomed since
the manual recreation of such solutions is generally a
long task with heavy handworks. Saving of time to
the IT department would enhance their acceptability
of the change and would replace the efforts on the
other phases of the migration project.

First lets have a look on each of the products we
are referring to.

2 BusinessObjects compared to Oracle

Business Intelligence

Business Objects is the major product developed
by SAP which provides it’s users with the most
advanced Business Intelligence features. It fulfills
with specific tools all the requirements for developing
the business intelligence basics. It is possible to build
queries (free hand SQL queries or through the
metadata creation), this can be fed through a data
warehouse, additional data, text and web mining
techniques can be implemented for a more accurate
analysis of an unstructured information and it has a
SAP BPM tool. Of course it is enriched with a
graphical user interface which is depending on the
accessibility needed for each of the tools. It has
desktop developed tools, basically tools required to
perform heavy, not-collaborative tasks which require
a single user to utilize it at a time. It also provides
web components or tools for the tasks which are used
massively by the users and which are basically used
for analysis and report generation. Currently, this SAP
product has reached the version of BO 4.2.

Oracle Business Intelligence from the other side is
the major Business Intelligence tool developed by
Oracle. The current version is 11g.

“Oracle Business Intelligence Enterprise Edition
11g (OBIEE) is an unmatched and comprehensive
business intelligence and analytics platform that
delivers a full range of capabilities including
interactive dashboards, ad hoc queries, mobile
analytics, notifications and alerts, enterprise and
financial reporting, scorecard and strategy
management, business process invocation,
unstructured search and collaboration, integrated
systems management and more.” [Ora13]

This shows basically main features offered by
OBIEE which are comparable to those offered by BO.

What we have to be focused here it is the metadata
which are used by these products in order to feed the
tools when data are not directly extracted through free
hand SQL. These metadata organizations are called
Universes and Repositories respectively for the BO
and the OBIEE. This intermediate layer between the
different data sources and the processed information
for an organization is a specific complex multitier
metadata which stores information on these data

sources, how these sources are interlinked and how
this information is mapped to business rules.

The BO Universes and the OBIEE Repositories are
designed through some specific tools, part of the
product which follow up the design process through
these layers. These tools respectively are called as
Universe Designer and Administrator Tool. Both
these tools are desktop applications which are used
generally by a single user, even though there exists
collaboration techniques and configurations which
might be used in the cases of distributed development
environment. But this collaboration is not very easy
and sometimes it requires manual merging of the
changes done by concurrent developers.

Hereafter we will specify the way these
applications organize the information in multiple
layers and how all this information can be developed
in these tools from the data sources to the presentation
manifestation of these data.

These tools have been used for long times now and
no information is given by the companies which
might make developers, integrators and researchers
think that these tools will be switched by other tools
(possibly web applications) or these tools will become
deprecated in the near future.

Let us analyze this multilayer designed
environment.

3 Layers of the metadata design

Both the Administration Tool for OBIEE and the
Universes Designer used by BusinessObjects, are
separate tools used to design the metadata repository
and are not part of the process of generating the
reports and analysis. Actually they produce the core
feeder for the intermediate layer of a OBIEE system,
which is the information holder on the data
organization and relationship.

Following is an image showing the Administration
Tool which as can be viewed as a tool peripheral to
the system but as producer of the Universe, creates
one of the main elements used by Oracle BI Server,
the Server which extracts from the Data Sources, the
requests from the clients.

Figure 1. OBIEE architecture [Ger16]

In the following image it is shown that universes

created from the Universes Designer are central also
to the process of serving the client when referring to
the BusinessObjects architecture.

Figure 2. SAP Business Object Designer

Architecture Diagram [Com]

But not just the Business Intelligence system is a

multi-layer system itself. Also the tools provide the
model through a three major layers.

 Physical Layer
 Business Model
 Presentation Layer
In order to have a working solution, the

information should be passed through all these layers.
All the three layers should be populated with the
accurate information in order to provide a correct
migrated metadata model between two different BI
models.

These layers describe specifically the physical
model, the business model and the mapping of
information technical-wise and functional-wise, and
the presentation layer which describes the model as it
is viewed by the end user which is not required to
know the structure of the sources and their
dependences.

Hereafter we will be referring to the physical layer
as the database layer since for this conference I have
been focused mainly at databases as a source.

Both systems design their solution based on a
group of elements which populate the various layers
of their interface. There is a nearly one to one
conversion of elements between OBIEE and BO.
These elements will be matched hereafter following
their specific layer belonging. So from the very basic
(physical layer) to the presentation layer the most
important elements might be (at least for a not so
complex environment – since for complex tasks
additional efforts might be executed manually on the
environment to decrease the criticality of executing
such transformations):

OBIEE element BO element

BusinessModel Classes

ConnectionPool Connection

Database Database

Dimension Dimension

Measures Measures

Details N/A

LogicalComplexJoin Joins

LogicalTable Classes

LogicalTableSource N/A

PhysicalDisplayFolder Folder

PhysicalTable Tables, Views,
Derived Tables,

Synonyms

PresentationCatalog N/A

PresentationHierarchy Hierarchy

PresentationTable Classes

Schema Schema

Table 1. Comparison between some of OBIEE and

BO elements

As it can be seen by the above table, the number of

elements specified by OBIEE is quite major from
those of BO. But this doesn’t make BO less suitable
as a semantic layer interconnecting the Data Source
with the user. For some of the elements there is seen
no distinction between the presentation layer and the
logical layer in BusinessObjects. In the literature,
BusinessObjects is referred as “the powerful semantic
layer which lets you create complex SQL statements,
without you ever needing to know or write SQL”
[How12]. Anyway from this standpoint, it can clearly
be seen that even BO transfers the information
through structures from the physical layer to the
presentation one, since it creates independent
information gathering from the data source
information.

Following this logic, some information on different
layers, clearly defined in OBIEE through different
naming convention, in BO may be found under the
same element. As was illustrated in the previous table,
information on Classes (and sub-Classes unmentioned
above) may be found in OBIEE as referring to logical
and physical tables, as also can be linked to the
Business Model itself.

Furthermore, OBIEE allows a wider range of
organizing the information in subject areas, folders
and subfolders for each of the layers, while
BusinessObjects provides a more simplistic approach.
As it can be seen in the above table, some of the terms
we specified for OBIEE does not have any equivalent
in BO.

Let us follow now with the analysis of the models
for each of these systems.

4 Oracle Business Intelligence Model

Following the previous discussion, here is shown a
sample of built repository from a subset of tables
regarding the PC Module from Oracle FCUBS 12.2.
The schema regarding the relationship between these
tables has been illustrated in this image.

Figure 3. Relationship between tables in a subset

of the PC Module

According to the business rules predefined by the

need on querying information out of this partial
database, a conceptual schema has to be designed on
the result at the business layer.

Figure 4. Conceptual relationship at the business

end

It is necessary to develop in the Administration

Tool a three layered structure which covers the
information flow designing which will map the
physical stored data to presented information, easily
accessible by the user, straight through a business
model which interlinks both ends.

In the following image we can see the result on
such application for the above mentioned data model.
This design will be used to explore the XML structure
produced by the Oracle Administration Tool which
describes this repository.

Figure 5. Three tier layer for the PC module in the

Administration Tool

In the above image can be seen the three layers

(from right to left: i) Physical Layer, ii) Business
Model and Mapping and iii) Presentation Layer). This
solution was developed following the sample from the
Oracle manual [Ora12] suggests.

In order to produce an extract, which might be
used as a universally integrated structure, without
extracting the information from the repository

compiled file of Oracle, the only solution would be to
export this compiled file to a readable format which
might be created and exported, every time such task
would be required. This option is a project of XML
files, commonly known by Oracle as MDS XML
Documents. These files are simple XML files,
organized in folders which specify the different
elements which should be defined to build a
repository. These folders, which are then interlinked
by IDs, uniquely identifying these elements and also
which identify specific elements inside the XML files
are alphabetically ordered as: BusinessModel,
ConnectionPool, Database, Dimension, Group,
InitBlock, LogicalComplexJoin, LogicalTable,
LogicalTableSource, PhysicalDisplayFolder,
PhysicalTable, PresentationCatalog,
PresentationHierarchy, PresentationTable, Schema
and Variable.

Figure 6. Structure of folders for a MDS XML

Documents project

What these folders specify can be viewed basically

by reflecting on the name. Files inside these folders
are named by an element id having as naming
convention element_id.xml. Inside these XML
folders, are specified in XML tags (unfortunately
undocumented or unshared documentation by Oracle)
the specific information required to fully define each
element.

What is also unfortunate and which seam such a
strange behaviour, is that the MDS XML documents
created in such way from the Administration Tool
cannot be imported back in the Administration Tool
itself (at least for the 11.1.1.9.0 which is the last tool
Oracle has shared till the moment this paper was
written). Following several attempts, I concluded that
for some of the files, Oracle does not produce a
unique ID. This duplication of IDs fails to open the
MDS XML files and the opening of the whole project.
Anyway, this problem might be bypassed in case
these files are created through some other script, and
are not directly created through the Administration

Tool itself. At least this solution might be convenient
if the conversion from BO universe to OBIEE
repository is done once and the maintenance of the
repository is done through the Administration Tool
always utilizing the compiled repository (.rpt file).

5 BusinessObjects Model

Business Object also follows a very wide variety of
integration and development kits in order to allow
users an automated access. As per SAP
documentation site there are provided “developer
guides, API reference material, sample code, and
object model diagrams for Java, .NET, COM, and
Flex APIs available in SAP BusinessObjects BI
4.x”[Leo16].

The simplest way which might be used to
document and develop, without using the Business
Object Universe Designer would be to take in
consideration the Excel VBA library provided for
BusinessObjects. T This library is called
BusinessObject Designer 12.0 Object Library and can
be download in the internet but which is also installed
during the Designer installation on a Windows OS
running machine.

The usage of this tool is based on two major
objects called Designer.Application and
Designer.Universe which execute methods in order to
get and set specific elements for the Designer. This
tool requires authentication to BusinessObjects in
order to proceed with any action, making the access
really secure.

For sampling on using these SDKs for Business
Objects, several online sites can be consulted. [Hil10]

6 Migration of the universes to

repositories and of the repositories to

universes

BusinessObjects allow the users to access and
modify information on a Universe, so it is possible to
define a new BO Universe starting from a pre-
extracted OBIEE repository, which should be simple
to read, as suggested by me in the previous chapter a
MDS XML documents structure, which might be read
from any of the third generation languages of which
SAP provides the SDK, and then the data fetched
might be used to create the required repository.

From the other side on, these tools (libraries)
provided for BusinessObjects, allow us to document a
whole universe, in such a detailed way that the
information might be used to recreate the same
metadata structure which was previously stored inside
the Universe itself.

A third generation development language might be
used, I propose a language with a strong XML

support, to take this information which might have
been stored in files, or even directly through the SDK,
and after compiling a MDS XML Documents project,
to upload this one for creating a compiled repository
which might be used for further modifications from
OBIEE Administration Tool (since the export of the
Administration Tool in MDS XML does not allow the
re-uploading of this document, without recreation and
replacement of the IDs as described in a previous
paragraph).

7 Conclusion

It is possible to build a tool which would facilitate
the migration between the two Business Intelligence
solutions, BusinessObjects and Oracle BI. One side,
the BusinessObjects side is fully automated and
functional, while the Oracle BI part still has some
small problems while producing the MDS XML
Documents project directly from the Administration
Tool. This problem makes it simpler for users to
switch from BusinessObjects to Oracle BI, while for
the other way, IDs of XML elements and folders have
to be recreated before usage.

The problem with exporting the MDS XML
documents, problem with the ID uniqueness which is
very important in XML elements identification, also
makes it difficult for OBIEE repository creators to
export and re-import the documents themselves. This
means that when producing a repository from a
universe, all migrations should complete in one hand,
without making further transformations on the
repository itself,since this change repository could not
be exported further more, making all remaining
changes subject to manual transformations.

Even though we mentioned it that one of the ways
is simpler, the other way is not impossible. Just the
creation of the universe from the repository should
ignore the existence of the IDs created by OBIEE and
regenerate IDs in order to determine elements. IDs
would not be a major problem since the identification
of the different elements can be done also by other
attributes (ex. the name of the element).

The automation tools have to be developed in
technologies which should from one side interact with
the SDKs BusinessObjects provide (for some of the
most popular third generation languages as Java, .Net
etc.) and from the other side should have capabilities
of simply validating and interpreting XML documents
and writing XML documents through specialized
functions. These XML elements should be linked

through their IDs sometimes giving name to elements
inside the documents hierarchy folders.

These automation tools would allow the users to
switch between these Business Intelligence solutions,
taking in consideration other aspects for the choice
than the migration of metadata between the two
solutions.

So, little to no efforts it would be needed in a one
to one migration, in case when the migration itself
wouldn’t require the redesigning or the fine-tuning of
the solution.

References

[Tur11] Turban E., Sharda R., Delen D., King D.

Business Intelligence – A managerial approach,

Second Edition, 2011, pp. 327.

[Ora13] Oracle Business Intelligence Suite

Enterprise Edition 11g - Data Sheet. (2013).

Retrieved from http://www.oracle.com/us/bi-

enterprise-edition-plus-ds-078848.pdf

[Wha09] What is a BusinessObjects Universe. (2009,

March). Retrieved from

http://alteksolutions.com/wp/index.php/2009/03/

what-is-a-business-objects-universe/

[Com] Compass Information Science.

http://www.wcompass.com/ SupplyProduct.aspx

[Ger16] Gerardnico. (2016, June 15). Retrieved from

http://gerardnico.com/ wiki/dat/obiee/bi_server

[Ora12] Oracle Financial Services Software Limited,

Oracle FLEXCUBE Universal Banking® 12.0

OBIEE Repository Development Guide, Release

1.0, May 2012

[Leo16] Leong, K., Moitel F. (2016, January 6). SAP

BusinessObjects BI 4.x - Developer SDK

Library. Retrieved from

http://scn.sap.com/docs/DOC-27465

[Hil10] Hilton, D., Stone, A. (2010, May 10). NET

RAS SDK Samples. Retrieved from

https://wiki.scn.sap.com/wiki/display/BOBJ/

[How12] Howson C., Newbould E. SAP

BusinessObjects BI 4.0 The Complete Reference,

Third Edition, McGraw Hill Professional, 2012,

pp. 551.

