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Abstract

Rust, as being a systems programming lan-
guage, offers memory safety with zero cost and
without any runtime penalty unlike other lan-
guages like C, C++ or Cyclone. System pro-
gramming languages are mainly used for low
level tasks such as design of operating system
components, web browsers, game engines and
time critical missions like signal processing.
Main disadvantages of the existing systems
languages are being memory unsafe and hav-
ing low level design. On the other hand, Rust
offers high level language semantics, advanced
standard library with modern skill set includ-
ing most of the features and functional ele-
ments of widely-used programming languages.
Moreover, Rust can be used as a scripting lan-
guage like Python, and a functional language
like Haskell or any other low level procedural
language like C or C++, since Rust is both
imperative and functional having no garbage
collector. These design choices make Rust a
suitable match for low level tasks via includ-
ing high level scalability and maintainability.
Meanwhile, EFI (Extensible Firmware Inter-
face) specification is aimed to remove the lim-
itations of legacy hardware. Hence, we present
our analysis of utilizing Rust language on EFI-
based bootloader design for x86 architecture,
to make it useful for both practitioners and
technology developers.

1 Introduction

Rust programming language has been designed by
Graydon Hoare and currently it is actively being de-
veloped by Mozilla Foundation. It is also being used

in Servo, Mozilla Foundations massively parallel web
browsing engine, which is unique because of its concur-
rent process rendering and compositing steps [JML15].
Rust, as being a systems programming language, has
ability to operate at the lowest level without any run-
time penalty, like C, C++ or Cyclone, but offers com-
plete memory safety, unlike these languages. Systems
programming languages are crucial for time criticial
tasks like signal processing and also for bare-metal op-
erations such as design of operating system compo-
nents, web browsers, game engines where raw hard-
ware access is a must. Existing systems languages are
memory unsafe and extremely complicated because of
their low level nature.

Systems programming languages are considered es-
sential for embedded systems because of low mem-
ory availability and exiguous processing power [HL15].
The main reason is the lack of garbage collector which
causes non-deterministic delays [LAC+15]. Garbage
collectors provide very safe memory management, but
poorly manages the memory space and unpredictably
runs at the background. This design choice also affects
energy consumption which is very important for em-
bedded systems and changes operating system design
paradigm [LMP+05].

On the other hand, Rust is both imperative and
functional language. Although including different fla-
vors, Rust is highly scalable with capable standard
library comparable to high level languages. Rich
language semantics and haveing no garbage collector
makes Rust suitable match for low level tasks while
having high maintainability level. Moreover, Rust can
be used as a scripting language like Python or as a
functional language like Haskell because of its inher-
ited skill set has been mostly adpoted from modern
languages.

C++ is the most powerful systems programming
language today. Because of its multi paradigm de-
sign and zero cost runtime performance, it is widely



used by numerous organizations and people with dif-
ferent backgrounds. C++ has features with compli-
cated runtime support like RTTI and exceptions dis-
abled for most bootloader applications. As it includes
every element from its predecessor C language, it also
includes every memory safety pitfall from C. This vari-
ation makes C++ even more vulnerable to memory un-
safety especially architects with C background widely
rely on these language elements. Cyclone, on the other
hand, developed as an extension to C language to pro-
vide Rust-like memory safety mechanism with ability
to port from C to Cyclone without much effort. How-
ever, this design choice caused the language semantics
to become restrictive and unwieldy.

Another language which is popular and somehow
racing with Rust is Go language because of its low
learning curve. Go is supported by Google and is a
high level language which can be compared to Python
or Ruby. Go neither have generic types nor pro-
vides safety over its concurrency model, Goroutines.
Rust has generics with monomorphisation so they are
statically dispatched and has good runtime perfor-
mance [Bal15].

Here, we present our analysis of utilizing Rust lan-
guage on EFI-based bootloader design for x86 architec-
ture, to make it useful for both practitioners and tech-
nology developers. Our analysis in this paper starts
with presenting Rust language basics in detail in Sec-
tion 2. Then, bootloading basics is presented in Sec-
tion 3. Since the main idea behind using Rust is pro-
gramming a critical-and-safe low-level task with high-
level programming concepts, we found bootloader de-
sign a typical application for this purpose, and discuss
design choices that make Rust suitable in Section 4.
Finally, Section 5 concludes our paper and states fu-
ture work.

2 Rust Language Details

Rust is an open source programming language, includ-
ing an issue system for bug reporting and separate
RFC tracker for language standardization, which are
located on Github repository. With the help of numer-
ous contributors around the world, Rust provides pre-
compiled development environment for Linux, Win-
dows and OS X. It is also possible to cross compile
Rust for Ios, Android, Rasperry Pi and other operating
systems. As Rust is a separate development toolchain
from operating system, it is radically closer to deter-
ministic code generation process. Hence, Rust is com-
pletely decoupled in this perspective. On the other
hand, languages like C or C++ depends on header
files and libraries through the operating system, lots
of applications along with various operating system
distributions and updates might influence the collec-

tion.

Rust ecosystem includes Rustc compiler but also a
very powerful package manager, Cargo with its registry
webpage for crates, Rustfmt for code formatting, and
Rustdoc. for automatic document generation. Cargo
has very well dependency management as it offers
strict versions of dependencies to be defined. It allows
arbitrary flags to pass to Rustc, the Rust compiler,
but most importantly with target argument [HL15] it
is possible to cross compile to another system differ-
entiating from host operating system. There is also
features argument for conditional compiling. Cargo
reads projects meta information from a Toml file which
is very much like JSON, but more suitable for human
editing, rather than data serialization.

2.1 Rust Programming Concepts

Ownership is one of the most important language se-
mantics of Rust. Variable bindings can have one
unique owner. They can be moved, can be borrowed
numerous times if they are not previously borrowed
as mutable, that can be happened only once. Own-
ership also works on resources like files or sockets and
across threads. Rust provides traits to offer functional-
ity similar to inheritance [JML15]. For example, to du-
plicate an object Rust have Clone trait [LAC+15] also
there is Copy trait for bitwise copying. Anonymous
closure functions are also defined in terms of traits in
Rust like Fn or FnMut depending on mutability and if
the closure is called once it should be FnOnce. They
can not be used as a return value so they should be
enclosed into a Box which allocates space from Heap
memory [Lig15].

Rust have Structs in a very similar way to C. The
main difference is data structure itself may be pub-
lic whereas its elements may be private in the code
space. Rust offers algebraic Enum which is more func-
tional and much more advanced compared to that of
C++, which only has type checking. Option generic
type is a special Enum type with maybe characteris-
tic. It is being used as a selector between a return
value, Some, or an error value, Err (or absence None).
This Option and Error types are suitable for repre-
senting Null pointers so that it is impossible Rust to
have Null pointer errors. This paradigm is also suit-
able for Null pointer optimization as Rust uses LLVM
compiler infrastructure and benefits from same back-
end optimizations of C language family. Pointer safety
is guaranteed with holding Lifetimes. Like type infer-
ence, reference lifetimes can be guessed by Rust com-
piled and this is called lifetime elision. Sometimes ex-
plicit lifetime marks are required as references lifetime
must be equal or larger than its originating binding.

Concurrency is the core of Rust. Same owner-



ship mechanism applies across threads and Rust offers
thread safety mostly on compile time. Channel, for
example, allows data to be send safely across threads
if the type satisfy Send Marker trait. Markers are
Rusts internals to enforce safety rules. Other impor-
tant markers are Sync, can be shared across threads,
Sized, type has a known size at compile time. When
multiple threads need to modify same region of mem-
ory classical lock mechanisms like Mutex or RWLock
are provided. The key point is locking in Rust works
on the data itself, not on the code. Software architects
using C++ tries to prevent data race by locking the
code itself by design.

A well-known analysis on the cost of software test-
ing [Pat01] states that if a design error at the specifi-
cation phase costs about zero to 10 cents, in the soft-
ware testing phase it costs 1 to 10 dollars. However,
if the error is found by the eventual user the cost is
at least 100 dollars, hence the increase is logarithmic.
To help in reducing the errors, Rust is designed to be
a strong and static language. Dynamic languages suf-
fer from compiler aid or lack of typing depending on
language design. They have low learning curve and
high portability or embedibility. On the other hand,
languages with strong typing such as Rust or Haskell
have higher learning curve but provide superior type
safety at compiling stage. Compilers are far better at
catching bugs than human eye. There are also weak
static languages exist. They offer automatic type con-
version and this unpredictability causes bugs just like
dynamic languages. Undefined behaviors have always
been spots for hard to find bugs. For example, C++
language, unlike Rust, does not define size of its main
integer type, int, or char type can be signed or un-
signed depending on various factors like compiler, op-
erating system or building flags.

Charles Petzold described a telegraph relay as a de-
vice that a clicker and a sound magnet connected with
a stick by lazy operator. Because they were moving
simultaneously [Pet00]. As it is acceptable for the op-
erator to make mistakes when hearing the Morse code
for a day and clicking the correct dash or dot code
as there is no mechanical aid. Dynamic languages are
somehow the same. Compiler support is an example
for the relay device, with strong type checking, is seri-
ously important to prevent human errors. Rust takes
this a step forward by providing compile time memory
and thread safety. Runtime checks are done only if
there is no any other choice, like bound checking for
arrays.

Rust also have borrowed functional elements from
various languages, for example, Iterators. They are
lazily evaluated and offers numbers of higher order
functions when an iterator is defined or converted into.
Functional flavor is harder for systems programming

audience. Like borrowing a master chefs knife, imper-
ative paradigm is powerful when used correctly, but
tend to fail because of its destructive nature on global
data [Oka99].

2.2 Comparing Rust with C and C++

Rust is the remedy for numerous systems program-
ming bugs by design. First one is buffer overflow or
underflow on arrays. C++ has no bounds checking
for arrays so writing or reading outside of bounds may
cause corruption or page fault depending on operation.
Rust checks array bounds at runtime because there is
no way to detect array size at compile time. Also Rust
does not allow indexing operation with negative argu-
ment. Array elements are accessed with Index trait
and this trait is not defined for negative values. At last
integer overflow remains. Fortunately, Rust checks for
arithmetic overflows if the number is unsigned. This
type of corruption is the main source of buffer related
attacks for years.

The second is iterator invalidation. With C++,
while an iterator is looping over a collection and the
collection has been modified, this causes the iterator
to be invalid. Data is corrupt or iterator goes into
an infinite loop depending on operation. With Rust,
as the collection is borrowed by the iterator, it can
not be borrowed mutably by modifier functions like
Push [Bei15].

The last one is use-after-free memory bugs. High
level languages prevent this kind of error by using
garbage collector while Rust has its unique ownership
and lifetime semantics to prevent this memory pitfall
with zero runtime performance cost. Rust also has hy-
gienic macros and the macros are part of AST trans-
formation [Lig15].

Rust has unsafe blocks for non-ideal conditions like
dereferencing raw pointers, type transmute or foreign
function interface. With Rust, there is no possibility
to cause concurrency failure outside of unsafe block
even if the design of application is tremendously bad.
Raw pointers are ideal for storing MMIO or interrupt
controller, system tables memory address as they are
stored on constant memory location. C language does
not prevent pointers to be modified outside of their
lifetime this is a problem with Rust only when unsafe is
used. Rust also offers strong foreign function interface
to C language with Extern keyword and talking to C
has no runtime performance cost. This makes calling
foreign function from EFI is extremely simple with a
simple binding module.



3 Bootloading Basics

3.1 Legacy Bootloading

Bootloaders are responsible for building memory map,
finding system tables and launching operating system
kernel. For backwards compatibility reasons CPUs
with x86 architecture used to start in 16-bit real mode
which only has access to 1MB of memory. Typical
routine of a bootloader should be first enabling higher
memory over A20 gate [Cor16]. Bootloading concepts
heavily relies on chipset specification and BIOS inter-
rupts. As they are designed by different hardware
vendors, conflicts exist on different systems. Such
units have grown organically over years and they have
poorly standardized.

Next step should be enabling protected mode, which
provides 32-bit addressing and paging. Activation of
paging is mandatory and also very useful as it provides
separation between kernels and user applications pages
in terms of permissions. Also paging is the key for vir-
tual memory along with creation noexecutable pages
to prevent runtime code execution from text sections.
Paging is also being used on high level, for example
guard paging is being used to grow stack when there
is a page fault exception at the end of program stack.
On real mode there is another memory management
called segmentation. It works by using different selec-
tors for sectioning areas of code and data blocks. After
protected mode switch segmentation is now obsolete,
but at the same time it is still active and has to be
configured such as it should provide the same flat ad-
dressing. Some segment registers are still being used
in Linux kernel to detect buffer overflow over function
call return address on stack.

Lastly, there is long mode with provides 64-bit ad-
dressing in canonical form and removes historical fea-
tures like BCD [Cor16]. Different kernels have strict
requirements about the state that it is going to be
started. There are also various sub-modes like for em-
ulating real mode interrupts in protected mode, called
virtual-8086 mode, or emulating complicated driver-
required devices in early modes, called system man-
agement mode. Between this mode switches interrupt
controller must be reconfigured correctly. At the old
times real mode interrupts which were invoking appro-
priate BIOS support were being used in place of device
drivers in order to talk to the hardware.

As devices became much more complicated operat-
ing systems took over all hardware interaction. BIOS
were started to be used as a bootloader firmware. Its
complex nature was such a boredom and also lack in-
teraction with modern technology, such as network ac-
cess, was led Intel to design EFI specification which
is a modern platform firmware for bootloading. EFI
can run applications just like an operating system and

most importantly runs the system in long mode.

3.2 Unified Extensible Firmware Interface
(UEFI)

EFI specification has been designed by Intel in 1999
and now it maintained by UEFI consortium that in-
cludes more than 160 companies [ZRM11]. EFI has
lots of modern features such as networking, human in-
terface device support and bootloader driver model.
It provides safer way to update firmware update with
packages, Capsules, that enforce EEPROM valida-
tion [BZ15]. The flowchart of EFI-based bootloading
process is shown in Figure 1.

EFI is built up with numerous modules while boot,
runtime and driver modules are mandatory. Boot
module is the key to generating memory map and lo-
cating systems tables. x86 memory model, while de-
pending on memory controller or chipset, has lots of
gaps in the memory [YZ15]. These include MMIO,
configuration registers for PCI devices4, legacy timers,
video frame buffers or regions belongs to ACPI or
interrupt controller tables (reclaimable or not). As
brute-forcing to generate a memory map is extremely
unstable, EFI provides the map out of the box. Driver
model allows to create drivers for file systems or NIC
devices for richer bootloading environment. While
runtime module offers monotonic timers, system time,
power supply commands or firmware updating.

EFI bootloader applications can be developed with
Rust like any other applications uses foreign function
interface, but there should be no standard library for
all types of operating systems. The library of Rust
is rich as high level languages. Most of the language
characteristics provided over standard library and not
embedded into languages itself. Rust binaries should
be linked into a final Portable Executable (PE). PE
file format is being used in Windows operating system
and offers sectioning along with relocation [Hah14].

4 Designing EFI-based Bootloader
with Rust

In order to create an EFI application with Rust, first
Libcore should be compiled for target platform. Lib-
core is the bare-metal subset of Rust standard library
that has no operating system dependency. A few mem-
ory functions are needed to build Libcore, which can
be obtained from Rlibc. It is also possible to use their
C counterparts. EFI application, Rlibc library and
Libcore should be cross-compiled to target system by
correct triplet. Although x86 64-pc-windowsgnu is the
most suitable triplet (because of a future PE linkage)
for such a bootloader application, it is not sufficient.

There should be a custom target triplet definition
file in JSON format and it should disable few language



Figure 1: The flowchart of EFI (Source: https://en.wikipedia.org/wiki/Uni-fied Extensible Firmware Interface).
features.

• First of them is Compiler-rt, because otherwise
LLVM compiler infrastructures helper library or
Rust languages itself should be reconfigured and
recompiled for target architecture even though
there is no need.

• Second one is Morestack, as there is no highlevel
memory management Morestack is not declared
by the application and stack is managed manually
so compiler should not define Morestack.

• Third one is stack unwinding as when an excep-
tion occurs in a bootloader, there is little to no
chance to recover. It is also known as landing
pads in Rust and can also be defined as compiler
flag.

• Finally, floating point operations and optimiza-
tions must be disabled from the triplet configura-
tion file. It has been found that floating point op-
timizations corrupts interrupt handlers with bare-
metal Rust [HL15]. Also in bootloader environ-
ment, floating point stack or coprocessor have not
yet configured. Also most operating system ker-
nels does not provide floating point functionality
in kernel space. Along with the FPU stack and

SSE, there are also other mathematical floating
point units such as MMX and 3dNow depending
on CPU model. LLVM does not allow us to dis-
able floating point support in such state because
Libcore library has floating point code. It should
be modified and cleaned from floating point in
order to be used in kernel or bootloader program-
ming. One example can be that Fxsave or Fxstor
instructions copy every FPU storage registers into
stack between function calls.

The EFI application then can be linked with sub-
system 10 flag, put into FAT32 drive and tested with a
computer or virtual machine. Ovmf is an open source
BIOS for Qemu having EFI support. Qemus nographic
option makes it easy to integrate into any develop-
ment environment. There is also a tool called Multi-
rust which crates Rust version overrides for folders. It
makes easier to make switch between nightly versions
or stable release of Rust. EFI also has a shell which
is a helper for bootloader design. For example, Pci
command lists pci device paths or Memmap shows the
memory map. EFI Capsules also support I2C which
can be used to flash ROMs belonging other hardware.

Historically bootloaders consisted two or three
phases. They were loaded into memory step by step,
upgraded the system to a higher mode and prepared



the environment for the next phase. This is no longer
required with EFI, but it is possible to keep this de-
sign. As an EFI application relies on its own binary
structure and calling convention, it may beneficial to
use a second stage bootloader which has been started
from EFI. This second stage application is not sub-
jected to EFI specification and is just a small kernel
indented to run the real kernel.

There are numerous resources on operating systems
design with Rust including [HL15] and [Lig15]. All re-
sources with C language are applicable to Rust since
the syntactic elements of these two languages are sim-
ilar. Also Rusts strong foreign function interfaces pro-
vides strong interaction. C is lingua franca of systems
languages. It has very good runtime performance and
has raw memory management capability. Its abstract
machine model perfectly fits into current hardware
which utilizes program counter, registers and address-
able memory, but its type system has aged [Pos14].
Rust, on the other hand, is fresh and brings lots of
modern features from newer high level designs. It of-
fers safety at compile time and abstractions are zero-
cost at runtime.

5 Conclusion and Future Work

In this paper, the advanced semantics of Rust pro-
gramming language is presented to clarify the possi-
ble use within EFI-based bootloader design process.
Various design alternatives and choices are mentioned
and the point that make Rust a better choice are dis-
cussed. Since one of the main ideas behind using Rust
is programming a critical-and-safe low-level task with
high-level programming concepts, we found bootloader
design a typical application for this purpose

As discussed, Rust offers high level language se-
mantics, advanced standard library with modern skill
set including most of the features and functional ele-
ments of widely-used programming languages. More-
over, Rust can be used as both a scripting language
or a functional language. Additionally, it can also be
used as a low level procedural language since it is both
imperative and functional having no garbage collector.
These design choices make Rust a suitable match for
low level tasks via including high level scalability and
maintainability.

From the bootloading perspective, the future seems
to be based on EFI on x86 hardware. It currently al-
lows end users to download operating system from the
Internet and install easily. Today memory unsafety
causes serious problems, hence adaptation of Rust is
not economical or social, it is intellectual. As our fu-
ture work, we plan to develop a prototype based on
this design process and validate the use of Rust via
performance experiments.
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