
GPU programming using C++ AMP

Petrika Manika
Dept. of Informatics
University of Tirana

petrika.manika@fshn.edu.al

Elda Xhumari
Dept. of Informatics
University of Tirana

elda.xhumari@fshn.edu.al

Julian Fejzaj
Dept. of Informatics
University of Tirana

julian.fejzaj@fshn.edu.al

Abstract

Nowadays, a challenge for programmers is to
make their programs better. The word "better"
means more simple, portable and much faster
in execution. Heterogeneous computing is a
new methodology in computer science field.
GPGPU programming is a new and
challenging technique which is used for
solving problems with data parallel nature. In
this paper we describe this new programming
methodology with focus on GPU
programming using C++ AMP language, and
what kinds of problems are suitable for
acceleration using these parallel techniques.
Finally we describe the solution for a simple
problem using C++ AMP and the advantages
of this solution.

1. Introduction

The process of implementation of an algorithm as a
solution for a difficult problem, requires a deep
analysis. Although, today there are many tools that
facilitate this work for the analysts and the process of
translation into a programming language for the
programmers. There are always difficulties when the
execution speed is important. When the execution
speed is not the main condition, then for programmers
is easier and they can faster find a solution by building
a source code, which contains instructions that are
executed in series. When the primary condition of the
proposed algorithm is the execution speed, then
parallel programming becomes more important.
Besides parallel source code, whose instructions are
executed in parallel from CPU (Central Processing
Unit), a new methodology is GPGPU programming.
General-purpose computing on graphics processing
units (GPGPU, rarely GPGP or GP²U) is the use of a
graphics processing unit (GPU), which typically
handles computation only for computer graphics, to

perform computation in applications traditionally
handled by the central processing unit (CPU)1. The
architecture of graphics processing units (GPUs) is
very well suited for data-parallel problems. They
support extremely high throughput through many
parallel processing units and very high memory
bandwidth. For problems that match the GPU
architecture well, it common to easily achieve a 2×
speedup over a CPU implementation of the same
problem, and tuned implementations can outperform
the CPU by a factor of 10 to 100. Programming these
processors, however, remains a challenge because the
architecture differs so significantly from the CPU. This
paper describes the benefits of GPU programming
using C++ AMP language, and what kinds of problems
are suitable for acceleration using these parallel
techniques.

2. Performance Improvements
The world "Personal Computer" was introduced for the
first time in 1975. Over the decades, the idea of having
a personal computer become possible and real.
Nowadays every person possesses various electronic
machines from desktop computer, laptop up to
smartphones. Over the years, the technology evolution
made these electronic machines to work much faster.
Manufacturers continued to increase the number of
transistors on a single chip, but this faced with the
problem of heat produced from this chips. Due to this
problem, manufacturers started to produce multicore
machines with two or more CPUs on a computer.
However, adding CPU cores did not make everything
faster.

We can divide softwares in two groups: parallel-
aware and parallel-unaware. Parallel-unaware
softwares use almost 1/4 or 1/8 of available CPU cores,
while parallel-aware softwares can reach an execution
speed 2x or 4x more than softwares of the second
category, proportional to the numbers of CPU cores.

1 General-purpose computing on graphics processing

2.1 Heterogeneous Platforms

In the last years, also the graphics cards have
encountered a powerful development. A graphics
processing unit (GPU) is a computer chip that performs
rapid mathematical calculations, primarily for the
purpose of rendering images2. GPU has a powerful
parallel processing architecture, so it can render images
more quickly than a CPU. GPU is a programmable and
powerful computational device in its own right. The
resulting performance improvements have made GPUs
popular chips for other resource-intensive tasks
unrelated to graphics.
GPU-accelerated computing is the use of a graphics
processing unit (GPU) together with a CPU to
accelerate deep learning, analytics, and engineering
applications. If CPU is the brain of the PC, GPU is
called it's soul. Nowadays, we can find machines with
two, four, seven CPU cores, but GPUs can have
hundreds of cores. If we want to know the difference
between a GPU and a CPU, let's see how they process
tasks. A CPU consists of a few cores optimized for
sequential serial processing, while a GPU has a
massively parallel architecture consisting of thousands
of smaller, more efficient cores designed for handling
multiple tasks simultaneously. Imagine a mix of GPU
cores and CPU cores in a machine, in the same chip or
not, this is a heterogeneous supercomputer.
In computing, FLOPS or flops (Floating-point
Operations per Second) is a measure of computer
performance, useful in fields of scientific calculations
that make heavy use of floating-point calculations. For
such cases it is a more accurate measure than the
generic instructions3. So a 1 FLOP machine will do one
"operation" in a second. Floating-point
operations involve floating-point numbers and typically
take longer to execute than simple binary
integer operations. 1 Gigaflops has 1 billion FLOPS,
and 1 Teraflops has 1000 Gigaflops. A typically CPU
can achieve 100 GFLOPS. A typically GPU has 32
cores and has twice as many transistor as the CPU and
can achieve 3000 GFLOPS.

2 http://searchvirtualdesktop.techtarget.com/definition
 /GPU-graphics-processing-unit
3 FLOPS - https://en.wikipedia.org

Figure 1: CPU vs GPU

The reason why GPU achieves this performance lies
not in the number of transistors or the number of cores.
Memory bandwidth is the rate at which data can be
read from or stored into a semiconductor memory by
a processor. Memory bandwidth is usually expressed in
units of bytes/second4. The memory bandwidth of a
CPU is roughly 20 GB/s, compared to the GPU’s 150
GB/s. The CPU supports general code with
multitasking, I/O, virtualization, deep execution
pipelines, and random accesses. In contrast, the GPU is
designed for graphics and data-parallel code with
programmable and fixed function processors, shallow
execution pipelines, and sequential accesses.
A strong point of GPUs is power consumption. A GPU
can do 10 GFLOPS/watt, a CPU can do 1
GIGAFLOPS/watt. The battery life of a machine is
very important, especially in handheld devices. In most
cases, users prefer not to use applications that consume
battery fast, replacing them with similar applications
that do not consume the battery. If we study the
memory accessed from this chips, CPU has a large
cache for the data that it access, in order to not wait for
the execution of the processes that read data from
primary or secondary memory, since the CPU use often
the same data. GPUs have smaller caches, but use a
massive number of threads and some threads are
always in a position to do work. GPUs can prefetch
data to hide memory latency. Different from CPU, a
GPU have small cache, because the probability to
access the same data more than once is small.
Nowadays we can find a lot of CPU programming
languages. C++ is a popular CPU programming
language. It is a main language of choice when it
comes to power and performance. Choices are few
when it comes to general-purpose GPU programming
(GPGPU). Developers need a way to increase the speed
of their applications or to reduce the power
consumption of a particular calculation. A solution is

4 FLOPS - https://en.wikipedia.org

using heterogeneous computation with GPUs, in
association with CPUs. One bad side of this choice is
the restriction on the nature of softwares that can be
built using this methodology.

2.2 GPU Architecture

GPUs have shallow execution pipelines, small cache,
and a massive number of threads performing sequential
accesses. Threads are arranged in groups. This groups
are called warps.

Figure 2: GPU Architecture

Warps run together and can share memory and
cooperate. A powerful ability is that GPUs can switch
these groups of threads extremely fast, so if a group of
threads is blocked, another group of threads executes.
When adjacent threads use adjacent memory locations,
the way the memory is read provides good speed
performance. The bad side is when threads in a group
are accessing memory that is not near the memory
being accessed by other threads in that group,
performance will suffer.
Developers of high level programming languages do
not have the necessary to now the architecture of CPUs
as long as there are tools like compilers. If a developer
wants to write code that will be executed on GPUs, he
should know basics from GPU architecture.

2.3 Performance improvement through parallelism

CPU works with both parallel code with parallel data
and sequential code. GPU works best on problems that

are data-parallel. There are problems that can easily be
divided into sub-problems which can be executed in
parallel and independent of each other. But there are
also problems that if you treat them in a manner, you
will not be able to divide them into units that can be
executed in parallel, but they must be treated in another
way, so you will be able to divide them into
independent units that can be executed in parallel. The
conclusion is that when programmers think about the
solution (source code) of a problem and the execution
speed is the priority, they must think about a parallel
solution. They need to design the algorithm differently
to create work that can be splited across independent
threads.
For example, a problem with a parallel nature is the
addition of two matrices. If we want a quick and simple
solution, in C++ it would be as follows:

int M1[n][n],M2[n][n],M_sum[n][n];
for(int i=0;i<n;i++)
{
 for(int j=0;j<n;j++)
 M_sum[i][j]=M1[i][j]+M2[i][j]
}

If we have two matrices 100x100, with 10000 integer
numbers, the above code will take 10000 additions,
10000 operations that will be executed one by one. If
we want e fast execution, we can think about a parallel
solution, so we can split the operations among 10000
threads and all the additions could be done at once.
Another example is the problem of finding the highest
value in a vector (array, collection). The fast solution is
to traverse the array one element at a time and
comparing each element to a maximum value
(represent the currently highest value), then updating
the maximum value with the current element of the
array, if it is larger. If the array has 100000 elements,
this will take 100000 comparisons. If the priority is the
fast execution of the algorithm, we can think for a
parallel solution, so we can select 1000 threads and
they can take on 1000 items each. After the
calculations, each thread will select the highest value of
its portion of the array. That way you could evaluate
every number in the time it takes to do just 1000
comparisons. After that, a 1001st thread could compare
all the results from the threads for finding the highest

value. Problems that involve large quantities of data are
candidates for parallel processing. Some fields where
we can find this kind of problems are:

• Real-time control systems
• Scientific modeling and simulation
• Gaming
• Financial Simulation
• Image processing

One way to reduce the amount of time spent in the
sequential portion of your application is to make it less
sequential—to redesign the application to take
advantage of CPU parallelism as well as GPU
parallelism.

3. GPU Programming frameworks
Nowadays exists some GPU programming languages
that developers can use to build parallel softwares.
These parallel programming languages have their
advantages and disadvantages. Some of these platforms
are:

3.1 OpenCL

OpenCL is the dominant open general-purpose GPU
computing language. OpenCL is supported on Intel,
AMD, Nvidia and ARM platforms. It is a framework
for writing programs that execute across heterogeneous
platforms.

3.2 CUDA

CUDA is a parallel computing platform and application
programming interface (API) model created by NVidia.
The CUDA platform can work with C, C++,
and FORTRAN programming languages.

3.3 C++ AMP

C++ AMP (C++ Accelerated Massive Parallelism)
[Mil1] accelerates the execution of C++ code by taking
advantage of the data-parallel hardware that's
commonly present as a graphics processing unit (GPU)
on a discrete graphics card5. C++ Accelerated Massive

5 https://msdn.microsoft.com/en-us/library/
 hh265137.aspx

Parallelism (C++ AMP) is a native programming
model that contains elements that span the C++
programming language and its runtime library. C++
AMP is a library implemented on DirectX 11 and
an open specification from Microsoft for implementing
data parallelism directly in C++. This language is
easier to use and contains many libraries for building
data-parallel applications.

4. A C++ AMP Solution
To show more clearly how to use C++ AMP for
solving a data-parallel problem6, I will present the
following example. The problem is simple and has a
parallel nature, matrix multiplication.
Let’s take a mathematical or financial application
where part of a process is the multiplication of
matrices, but possible scenarios are multiplication of
matrices with small sizes and the multiplication
operation will not be executed many times, then a
serial source code for this operation would not take a
long execution time and the parallel source code would
be excessive. But, imagine a scenario with 200
matrices with 40000 elements each. From here we have
100 multiplication operations and the serial source
code would take a long execution time, while if 100
operations would be executed in parallel, utilizing the
facilities that GPU provides, the execution time would
be smaller.
Below is a simple un-parallel function in C++ for the
multiplication of two matrices:

multiplication(vector<vector<int>>& T1,
vector<vector<int>>& T2, vector<vector<int>>&
T3, const int n, const int m, const int k)
{
 for(int i=0; i<n; i++)
 {
 for(int j=0; j<k; j++)
 {
 int sum = 0;
 for(int z=0; z<m; z++)

6 C++ AMP Overview - https://msdn.microsoft.
com/en-us/library/ hh265136 (v=vs.120).aspx,
retrieved November 3, 2015.

 sum += T1[i][z]*T2[z][j];
 T3[i][j] = sum;
 }
 }
}

If the size of the matrices T1 and T2 would be
200x200, the execution time of this function in a
moderate computer would be 3.36 sec. If we take the
scenario explained above, thus 100 multiplication
operations, the execution time would be 336 sec, or 5.6
minutes.
Let’s see the C++ AMP parallel function for the
multiplication of two matrices:

multiplication_parallel(vector<vector<int>>& T1,
vector<vector<int>>& T2, vector<vector<int>>&
T3, const int n, const int m, const int k)
array_view<const int, 2> a(n, m, T1), b(m, k, T2);
array_view<int, 2> c(n, k, T3);
c.discard_data();
parallel_for_each(c.extent, [=](index<2> idx)
restrict(amp)
{
 int row = idx[0]; int col = idx[1];
 int sum = 0;
 for(int i = 0; i < b.extent[0]; i++)
 sum += a(row, i) * b(i, col);
 c[idx] = sum;
});
c.synchronize();

This version use the array_view data structure of C++
AMP library. The parallel_for_each function is the
main function that does all the parallel job from the
computer’s GPU [Gas2]. This function operates over
an extent—the shape of the extent is what controls the
number of threads that do the work. In a moderate
computer, the execution time is 20x faster than the un-
parallel solution. The difference in execution time
between the first function and the second is obvious.

5. Conclusions

If the primary condition of the proposed algorithm for a
problem is the execution speed, then parallel
programming becomes important. GPGPU

programming is a new and challenging technique
which is used for solving problems with data parallel
nature. Some fields where we can find this kind of
problems are: real-time control systems, scientific
modeling and simulation, gaming, financial simulation,
image processing, etc. For problems that match the
GPU architecture well, it is common to easily achieve a
2× speedup or more over a CPU implementation of the
same problem, and tuned implementations can
outperform the CPU by a factor of 10 to 100. GPU is a
programmable and powerful computational device in
its own right. GPU has a massively parallel architecture
consisting of thousands of smaller, more efficient cores
designed for handling multiple tasks simultaneously.
The memory bandwidth of a CPU is roughly 20 GB/s,
compared to the GPU’s 150 GB/s. A strong point of
GPUs is power consumption. A GPU can do 10
GFLOPS/watt, a CPU can do 1 GIGAFLOPS/watt.
If we want to build code that will be executed in
parallel, GPGPU is a good candidate as a new
technology and C ++ AMP is a language that provides
facilities while programming and necessary libraries.

References
[Mil1] Gregory, Kate, and Ade Miller. C++ AMP:
Accelerated Massive Parallelism with Microsoft®
Visual C++®. " O'Reilly Media, Inc.", 2012

[Gas2] B. R. Gaster and L. Howes, "Can GPGPU
Programming Be Liberated from the Data-Parallel
Bottleneck," Computer, vol. 45, no. 8, pp. 42–52, Aug.
2012

