
Genetic Algorithms in Traveling Salesman Problem

Nevila XOXA

Albanian Academy of Science

Tirana

nevila.xoxa@akad.gov.al

Valbona DHJAKU

Credins Bank

Tirana

vdhjaku@gmail.com

Igli TAFA

Polytechnic University of Tirana

Information Technology Faculty

Computer Engineering Department

itafaj@gmail.com

Abstract

Genetic algorithms are a revolutionary
technique which used operators like mutation,
crossover and selection in resolving optimization
problems. They have been used with success in
multiple problems. The TSP (Traveling Salesman
Problem) is one of these problems. It consists in
finding the route with minimal length, passing by
every node of a weighted graph only once. This
problem is found in many real world applications
therefore a good solution would be helpful. Many
methods have been used in finding the best
solution for the TSP but we are going to use
genetic algorithms as such solution. In order to
prove it we will simulate it in a test environment
to watch from close the way it works and the
efficiency of this algorithm in resolving our
problem.

1 Presentation

Genetic algorithms are an optimization technique based
on natural evolution, which includes the concepts of
natural selection into a searching algorithm and offers an
acceptable solution without the need of calculating all the
options. Genetic algorithms are based on the concept of
natural selection [Fal98]. In nature, the most adopted
individuals have more survival chances and therefore even
their children are more adopted and healthier than their
parents.

The same idea will be applied in problems supposing as
a start a group of solutions and later combining all most
suitable solutions to create a new generation of solutions
getting closer and closer to the required one. Genetic
algorithm consists of the followings steps:

– Encoding
– Evaluation
– Selection
– Crossover
– Mutation
– Decoding

A suitable encoding is found by thinking that every
solution to our problem has a unique code, in the shape of
a vector or a matrix. After that a starting population is
created in a completely random way. For each individual
of this population a natural selection level is calculated
which is used as coefficient to compare it with the other
individuals and finding out which is closer to the ideal
solution. Through these coefficients are used to select the
individuals that will be crossed over with each other.

The crossover is the process where 2 individuals are
combined to create new ones, which become part of the
new generation. After that the mutation happens. Some
randomly selected individuals are mutated, which means
that a character of the vector is changed leading to the
creation of new individuals (and therefore a new
generation). This process goes on until a stopping
condition is achieved. At this point the individual who is
closer to the final solution is decoded and the process
ends.

2. Standard Genetic Algorithm

We are given a problem with a well defined solution.
The preliminary process includes finding a way of
presenting such a predicted by the encoding. In this
situation a genetic algorithm would work like below:

1. We start by generating a population of random
solutions with n candidates of length 1 bit. (the genes)

2. We calculate function f(x) of the natural selection
potential of each candidate (chromosome) of the
population.

3. Repeat the steps until n descendant are created:
a. Choose a pair of chromosomes from this

population, with a probability of selection as in ascending
order. Each chromosome can be selected more then once
as parent of the selected couple.

b. With probability pc (crossover probability)
couples are crossed with each other in the random selected
point in order to produce 2 descendants. If we don’t have
a successful crossover we can take a copy of the 2 parent
and consider them as descendants.

c. Mutate each descendant in the selected
gene with probability pm (mutation probability)

mailto:nevila.xoxa@akad.gov.al

and put the new descendants in the new
population. If n is odd one of the descendants
will be randomly removed.

4. Replace the old population with the new one.
5. Restart from point2.

Each iteration of this process is called a
generation.

Figure 1: The evolution of a generic algorithm

3. Basic Concepts

Genetic algorithms can vary from straightforward to
very difficult to understand. Before we proceed let us give
a simple example of how they work. We need to maximize
a function f = -2x2 + 4x - 5 from a vector of whole
numbers {0, 1 …15}. From straight calculation we can
find that max (f) is reached for x=1.

3.1 Encoding

The encoding process is usually the hardest one in
resolving a problem with genetic algorithms [Mit91].
When applied in a specific problem it is usually hard to
find a correct presentation of the solution. Taking into
consideration that we have to encode many possible
solutions to create a population the easiest way to
represent it is through a vector of 0’s and 1’s. Anyway
based on the kind of characters used for presentation
encoding is divided in 4 groups:

– Binary Encoding
Usually used in problems with small complicity or
when the solution is expected to be a number.

– Encoding with real numbers

Used in problems that requires optimization of
functions and classified as the most convenient
[Wro96].

– Character Encoding [Rei94]. Best solution for
combinatory problems.

– Encoding with structure of data [Mic94]. Used in

real world problems

Let’s take into consideration the problem above. Our
possible solutions are clearly numbers, therefore we use
binary encoding. Therefore to represent numbers from
0 to 15 we need 4 bits which in genetic algorithms will
be called genes and the vectors formed by then will be
called chromosomes.

For example: 1  0001 15  1111

Now we in a random way we generate a population
from these chromosomes.

3.2 Selection

The main principle on which genetic algorithms is
essentially Darwinian natural selection. Selection provides
a driving force in genetic algorithms. Very strongly,
genetic research will be completed ahead of time, with
little power, progress of evolution will be slower than
usual. Usually, a pressure lower selection suggested early
genetic research in favor of an exploration of wider space
research, while a high pressure selection is recommended
at the end of genetic research to narrow the space
research, also achieving convergence solution. Selecting
drives genetic research towards a promising area of
research in space [Psg91]. During the past two decades,
more selection methods are proposed, examined,
compared listed below:

– Roulette wheel selection

– (µ + λ)- selection

– Tournament selection

– Steady- state reproduction

– Ranking and scaling

– Sharing
Roulette wheel selection, proposed by Holland is the

best type of selection known so far. The basic idea of this
method is to determine the probability of selection or
survival probability for each chromosome in proportion to
the value of adaptability. So a roulette wheel model can be
made to the appearance of these probabilities. Then the
selection process is done by turning the wheel as often as
population size, each time when a chromosome selected
only for the young population. Wheels present stochastic
method as a procedure sample. Baker proposed a
universal stochastic method which requires only one
rotation. Wheel is modeled like a roulette wheel, with an
equal number of areas with the population. The basic
strategy which is built on this approach is to maintain the
expected number of copies of chromosomes in the new
generation.

In contrast to proportional selection, selection (μ + λ)
and (μ, λ) of the proposed Back deterministic procedures
which are selecting the best chromosomes from parents
and offspring. We note that the two methods of selection
prevent duplicated chromosomes from the population,
many researchers prefer to use this method to work with
combinatorial optimization problems [Gol89]. Trunkan
selection and blocking it are also regarding the procedures
stochastic which classify individuals based on eligibility
and select the best parents. Elite selection of commonly
used as supplementary selections chromosomes
proportional to preserve the best of the new generation,
though not selected during the process of selection
proportional.

Distribution techniques, presented by Richardson for a
Golberg and multimodal optimized functions, are used to
maintain the diversity of the population. A distribution
function is a way to determine the degradation of the
eligibility of an individual from a neighboring individual
in a certain distance. Degradation, the probability of
reproducing individuals within a community falls while
other individuals are encouraged to japing successor.

In our problem, simplicity and efficiency that will be
used wheeling roulette, in which a group of individuals
will choose randomly, but the appropriateness of assessing
proportionality in the section above.

3.3 Crossover

Crossover may be eligible a straightforward procedure.
In our example, which used the simplest case crossover,
we randomly select two chromosomes to cross, I randomly
select an intersection point, and then we exchange all the
genes that are after that point. In our case:

v1 = 0111

v2 = 1100

We can suppose that the crossover point is randomly
selected after the 2nd gene.

v1 = 01|11

v2 = 11|00

By exchanging genes we would have:

v1’ = 01|00 = 4

v2’ = 11|11= 15

Now we have 2 new chromosomes which will be
moved to create the new population.

Figure 2: Crossover process with one point

Not every junction chromosome used. We reiterated
that the function of assessment gives or any chromosomal
'points' that are used to determine the probability that any
chromosome crosses, with the help of selection mentioned
above, chromosomes are selected to be crossed by chance
and the greatest opportunity is given to those with 'points'
higher. We use distribution collection created in the
evaluation process to select chromosomes by various
selection methods. Generate random numbers between 0
and 1 and choose which chromosome corresponds to our
distribution. We repeat to find the second and then the
intersection of two young individuals become part of the
new generation. The process continues until a new
generation is filled. Not necessarily better than the first
settler.

There are many types’ intersection routines, some of
which would later face. Sometimes we need us move the
intersection routines to ensure that the chromosomes do
not conclude logically incorrect.

3.4 Mutation

Mutation is the technique which enables us to process
not stalled local optimization. As a result of the process to
chance, occasionally we have chromosomes from optimal
local close but not that global. For this reason
chromosomes from optimal local close to the junction will
be solved because they will have greater adaptability, but
then the chances will be smaller to achieve global from
optimal. So completely random mutation as a way remains
the only option for finding a possible solution. Mutation is
applied after the intersection in one of the new generation
of chromosomes. Then randomly selected a point (gene)
on chromosome selected and change it. For
demonstration, in our example we have:

v1 = 0111

If we suppose that randomly has been selected as
mutation point the 3rd gene then v1 would become:

v1’ = 0101
Another inversion is a form of mutation. It is usually

used in special cases which will see later. Now we will
demonstrate inversion in the example we have taken.
Inversion consists of random selection of two points
Inverted in vector and then every bit For example:

v2 = 1100
We select 2 points:
v2 = 1|10|0
Invert the 2 genes:
v2’ = 1|01|0
If we had a bigger chromosome then we would have:
v3= 101101101001
v3= 101|101101|001
v3’= 101|010010|001

3.5 Decoding

Decoding is the last step to be followed in an algorithm
genetic, it's just the reverse process of coding, where the
final data or response algorithm to a problem, which come
in the form of selected coding return a response accessible
to the user or process. In this case, it made the transition
from binary to decimal conversion by the basic rules of
the way.

4. Traveling Salesman Problem

4.1 Entry

The problem of vendors traveling (Traveling Salesman
Problem, TSP) addresses the problem of finding a way to
visit a number of cities, with the proviso that each city is
visited only once, the journey ends in the city of the left
and this length be much smaller. The first example of TSP
was given by Euler in 1759, whose problem was to
displace the horse in any chess position only once. Fame
took in a book written by a German seller BF Voigt in
1832 how to become a successful traveling salesman. He
cited TSP, not with the same name, but suggested that an
important aspect was that every city to be visited only
once.

Standard problem or called as itinerant vendor’s
symmetrical problem can be expressed mathematically as
follows:

Given a weighted graph G = (V, E) where weights CIJ
crossing between nodes i and j is not a negative value,
find any connection node to have a minimum total cost.

Currently the only way to guarantee the optimal
solution to this problem of any magnitude is calculated
every opportunity connection between them and finding it
with lesser cost [Hgl92]. Any point of contact for a
number of towns in particular need calculation of n!
Possibilities of connections, with a growing number of

cities done this method inefficient, and unable to find the
cost of each link in polynomial time.

Figure 3: Example of a TSP problem

4.2 Why TSP? Applications

The problem of itinerant vendors there are plenty of
different applications in the real world, which makes it a
very common problem to be solved. Here we will explain
some of these applications. For example, some car router
problems can be addressed and resolved as TSP. Here the
problem lies in finding out who the client will be served
and by whom the car, and the minimum number of
machines necessary to serve each customer. There are
many variations and problems involving minimum time to
serve each customer. We can deal with such problems in
the form of a TSP-art.

Hardware problem connecting with "wireless" can be
modeled as a TSP. We have a set of modules, each with a
certain number of pin. We need to connect pins with
several groups of conductors to each other, but each pin
apogee is not to have more than two connections and the
length of the conductor is minimized.

Another found an application by Plate, Lowe and
Chandrasekaran control in aircraft gas turbines. Consisting
of several wind sensor located in the perimeter and
located on each level of the turbine to ensure a uniform
flow of gas. The positioning of wind indicators in order to
minimize the fuel consumption can be modeled as a
symmetric TSP problem.

Turn the work of a single machine with the time given
to each work and preparation for any work time is also a
TSP. We can minimize the work of a total aligning things
in the right order.

A robot must perform a set of operations to meet a
process. In this application, compared with sequences of a
machine works, we have advantages and limitations which
can be viewed as an asymmetric TSP [Jtr94].

Problems related to the acceleration of the work of
drilling electronic circuits, which consists Opening of
holes with different diameter for various electronic
elements, changing the head of drill spends more time
with it to a factory cost counties. Control of the work of
the drilling head can be treated as TSP.

As these and many other applications give a particular
importance to this problem, as in aeronautics, robotics,
industry, transport, telecommunications etc.

5. Genetic Algorithms As Solution For TSP

5.1 Adaptation
One of the methods for optimization is also tsp GA

(Genetic Algorithms). In the first chapter presented in
general terms how this method proceeds to the provision
of an optimal solution to a problem. In this part we will
focus on how helps an algorithm based on natural
evolution for solving a problem so large it is TSP-ja. Step
will adapt to any functional link genetic algorithms TSP-
in.

5.1.1 Adapted Encoding

We saw above basic ways of encoding a basic problem
using vectors to 0 and 1, who presented numbers in binary
form. The question arises how to introduce so easily
malleable and efficient problem of itinerant vendors? In
the same way we can use vectors encoding numbers as
12345, letters ABCDE vectors, also any other form of
strings of symbols, enough to make sense of the problem.
Below we present the main ways of presenting the TSP's
so malleable by genetic algorithms [Che00].

Matrix
Because in itself a problem as TSP-ja is itself a graph.

We can create a matrix of connections, which consists of
one and zero, where 1 defines the connection node of the
j-in and 0 division. We can then treat this matrix in
unmodified form or working with extending linearly
according to the ranks.

Vectorial
Form the first to introduce the problem of itinerant

vectors symbols can be cyclic, in the form of vectors:
V = b1 b2 ... bn...

Where mug to the value implied by the position vector
in that position, which means the tour goes from city to
city bi. For example, the vector v1 = 3421 is meant as a
tour that starts from city 1 to city 3, then from 3 to City 2
city, then the city 2 to 4 and from city to city 4 City 1. It
should be noted that in presentation this way not every
possible combination of numbers in the vector sense, such
as those that create closed loops without going into any
city such as v2 = 3412.

5.1.2 Adapted Evaluation

The evaluation process of individuals to create, which
in this case are the links of successive tour presented,
there will be nothing but the sum of each distance, cost or

weight from node to node. Given that our main task is
based on achieving the problem of finding a shortest tour,
the intention of solving this problem will tend to minimize
this assessment. Maintaining these distances or weights
between nodes can be calculated as distance Euclidian or
wasted searching algorithm can be stored in matrix form
by eliminating their need occasional calculation.

5.1.3 Adapted Selection

As we mentioned, the selection is one of the most
important operators in genetic algorithms [Llk86]. Given
that the goal is minimizing the tour, we ask individuals,
which in our case represent, with probability greater to be
selected to be those with greater conformity, then the
distance of the tour, the smallest defined by the evaluation
operator. All selection methods can be used, but as noted
in the chapter of our inquiry the best selection of selector
wheel solves roulette. Assessment determines those
individuals were part of the wheel which then 'rotate'

Figure 4: Roulette wheel selection

5.1.4 Adapted Crossover

We will start with the first partial junction (partially
matched crossover PMX). Assume that we are using
vector encoding type numbers, also reuse the intersection
with two points mentioned in the first chapter.

Figure 5: Partial Crossover

If we would have 2 vectors:

V1 = 1234 | 567 | 8

V2 = 8521 | 364 | 7

Crossover would be like:

V1’ = 1234 | 364 | 8

V2’ = 8521 | 567 | 7

Cyclic crossover CX works in a completely different
way. First, this type of intersection can be used only with
the presentation in the order shown, namely that where the
numbers are placed in order of visits.

In this type of intersection point we do not choose at
all. First choose one gene from their parents:

V1 = 12345678

V2 = 85213647

V2’ = 82315647

Figure 6: Cyclic Crossover

5.1.4 Adapted Mutation

So that mutations committed to provide seed even more
tailored, instead of leaving the process up to chance, as
noted in chapter 1, the problem of vendors strolling us
come to the aid of algorithms servo controller for selecting
the 'gene' that will undergo change, presented in section
2.4.2 of regulators the tour.

How early will revisit the 2-opt operators. Randomly
select two connections (a, b) and (b, c) from our tour and
check if we can find another way to link these four joints
in order to achieve a lower cost. To do this check if:

Cab + CCD> Cac + CDB
If the inequality completed Casualty replace

connections (a, b) and (c, d) with the new links (a, c) and
(d, b). We note that it was assumed that a, b, c, d
displayed in the order of the tour though b to c are not
connected. We also have 3-opt operator who controls
randomly selected 3 links instead of two. If we have
connections (a, b), (c, d) and (e, f), check whether:

Cab + CCD + Cef > Cac + CBE + CDF
If completed on like is replaced connections for these 6

nods.

6. Simulations with Different Algorithms

 Nr of

nodes

Optimal

Result

Best

approximate

result

Average result

from GA

Bay29 29 9074 9074 0.00 % 9075 0.01 %

Eli51 51 426 434 1.87 % 441 3.52 %

Berlin

52
52 7542 7544 0.02 % 7774 3.07 %

KroA

100
100 21282 21600 1.49 % 22445 5.46 %

KroA

200
200 29368 31864 8.49 % 32399 10.32 %

Conclusions

Genetic algorithms, their development, are playing a
very important role in resolving various problem-based
approach and anticipation. They have led an evolutionary
step forward calculation, and as term comprehensive
computerization. Genetic algorithms, through its junction
operators, mutation and selection enhanced algorithm so
create a more flexible and suitable for any application.

The problem of itinerant vendors, a conceptual basis of
a problem that arises in many real-life applications. Center
of attention of many mathematicians studies because of its
importance, has expanded so much in terms of different
types of treatment, as well as the techniques and methods
needed to solve it [Aff09].

In our subject matter treated as the use of genetic
algorithms to find an approximation to the problem of
itinerant vendors and based on simulations performed,
genetic algorithms constitute a relatively good proxy tool
to the problem of itinerant vendors. He responds ideally to
smaller nodes number 30 also gives a satisfactory
approximation and faster even more problems with joints.
As we see in the summary table relative dependence
calculated approximation does not exist only in relation to
the number of nodes, but also their position and weight. A
look at the results given by the algorithm to Berlin 52
Eli51 and draw the conclusion that genetic algorithm
shows more efficiency in large instance. Problems where
accuracy is the primary element, a greater number
generation need to get the best of him.

As in many other applications, genetic algorithms can
be used effectively for obtaining a satisfactory
approximation to the problem of itinerant vendors
[Hau04]. As a method which is based on more research in
the future, an even higher performance can be achieved by
him.

References

[Fal98] Emanuel Falkenauer. Genetic Algorithms and

Grouping Problems. John Wiley and Sons, 1998.

[Gol89] David E. Goldberg. Genetic Algorithms in

Search, Optimization and Machine

Learning.Addison-Wesley, 1989.

[Hgl92] Abdollah Homaifar, Shanguchuan Guan, and

Gunar E. Liepins. Schema analysis of the

traveling salesman problem using genetic

algorithms. Complex Systems, 1992.

[Psg91] Prasanna Jog, Jung Y. Suh, and Dirk Van Gucht.

Parallel genetic algorithms applied to the

traveling salesman problem. SIAM Journal of

Optimization, 1991.

[Jtr94] Michael Junger, Stefan Thienel, and Gerard

Reinelt. Provably good solutions for the traveling

salesman problem. Mathematical Methods of

Operations Research, 1994.

[Llk86] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan,

and D.B. Shmoys. The Traveling Salesman. John

Wiley and Sons, 1986.

[Mic94] Zbigniew Michalewicz. Genetic Algorithms +

Data Structures = Evolution Programs. Springer-

Verlag, 2nd edition, 1994.

[Rei94] Gerard Reinelt. The Traveling Salesman:

Computational Solutions for TSP Applications.

Springer- Verlag, 1994.

[Wro96] Jakub Wroblewski. Theoretical foundations of

order-based genetic algorithms. Fundamenta

Informaticae, 1996.

[Che00] Genetic.Algorithms.and.EngineeringOptimization

M.Gen R.Cheng (Wiley_2000)

[Mit91] An.Introduction.to.Genetic.Algorithms 5ed

M.Mitchell, 1991

[Aff09] Genetic.Algorithms.and.Genetic.Programming ,

M.Affenzeller, 2009

[Hau04] Practical.Genetic.Algorithms 2ed, R.L.Haupt dhe

S.E.Haupt (Wiley_2004)

