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Abstract— Named Entity Recognition (NER) in biomedical 
literature is a very active research area. NER is a crucial component of 
biomedical text mining because it allows for information retrieval, 
reasoning and knowledge discovery. Much research has been carried out 
in this area using semantic type categories, such as “DNA”, “RNA”, 
“proteins” and “genes”. However, disease NER has not received its 
needed attention yet, specifically human disease NER. Traditional 
machine learning approaches lack the precision for disease NER, due to 
their dependence on token level features, sentence level features and the 
integration of features, such as orthographic, contextual and linguistic 
features. In this paper a method for disease NER is proposed which 
utilizes sentence and token level features based on Conditional Random 
Fields using the NCBI disease corpus. Our system utilizes rich features 
including orthographic, contextual, affixes, bigrams, part of speech and 
stem based features. Using these feature sets our approach has achieved a 
maximum F-score of 94% for the training set by applying 10 fold cross 
validation for semantic labeling of the NCBI disease corpus. For testing 
and development corpus the model has achieved an F-score of 88% and 
85% respectively. 

Keywords— NCBI disease corpus, naïve Bayesian, Bayesian 
networks, Non nested generalized exemplars;  

I. INTRODUCTION  
Biomedical Named Entity Recognition (NER) is based on 
dictionary-based, rule-based and machine learning approaches 
[1] and [2]. In the dictionary based approach all the terms are 
not defined in dictionary. This is the major limitation of this 
approach [3]. Rule-based approaches make decisions based on 
certain rules, which are learned from the data in form of text 
terms. But these rules are not applicable in all cases [3]. On 
the other hand, machine learning approaches require enormous 
annotated data to train the algorithm [4]. Nowadays machine 
learning approaches are commonly used for NER, e.g., 
Support Vector Machines (SVM) [5], Maximum Entropy 
(ME) [6], Hidden Markov Models (HMM) [7] and 
Conditional Random Fields (CRF) [8]. In [9] an HMM model 
has been proposed to distinguish between DNA, RNA, 
protein, cell-type and cell-line. Kazema et al. proposed an 
SVM based approach to identify DNA, cell-type, cell-line, 
protein and lipid achieving an f-score of 73.6% [10]. In [11] 
CRFs based NER system was developed to recognize protein 
mentions achieving an F-score of 78.4%. Beside CRFs in [12], 

the author used ME to distinguish between 23 different 
biological categories achieving an F-score of 72%. 
Performance of biomedical NER as compared to general 
purpose NER is not satisfactory [13]. Many approaches have 
been used to enhance the performance of biomedical NER 
systems, e.g. adding biomedical domain knowledge [14] [15], 
applying post-processing [14] and combining different 
machine learning classifiers to perform a hybrid classification 
scheme [16]. Some of the above mentioned applications are 
discussed below.  
The exact biomedical term could be referred to by 
abbreviations or synonyms. Therefore, abbreviation and 
synonym recognition are used to unify and normalize 
biomedical entities for biomedical NER. For example, in [17] 
the authors have used logistic regression for abbreviation 
scoring based on the Medstract corpus thus achieving a recall 
of 83% and precision of 80%. In [18] an abbreviation 
recognition system has been developed using the AB3P 
corpus. Thus, a recall of 95.86% and precision of 86.64% 
could be achieved. In [19] pattern-matching rules were 
developed for matching abbreviations with their respective 
full term. Thus, a recall of 70% and a precision of 95% could 
be obtained. In [20] a system was developed based on 
collocations yielding a recall of 88.5% and precision of 
96.3%. In [21] a rule-based synonym recognition system was 
developed, in [22] a pattern matching system was developed 
to match abbreviations with their corresponding full names. 
A lot of current research is interested in entity recognition and 
normalization [23]. In the BioCreative III competition, one 
task was focused on gene normalization, i.e. to identify and 
link genes to the standard database [24]. Such system has also 
been developed in [25]. Relationships between biomedical 
entities, e.g. protein-protein interactions, gene-disease 
interactions are investigated in [26]. 
Much work has been done in the field of relationship mining.  
For example, in [27] a relationship mining system was 
developed using MetaMap to identify biomedical entities [28] 
while using linguistic rules to determine the semantic 
relationships between them. In [29] a gene-disease 
relationship extraction system was developed from Medline 



abstracts using machine learning approach. It performed better 
than dictionary- and rule-based approaches.   
The research in this work focuses on biomedical disease 
classification using the National Center for biotechnology 
(NCBI) corpus and applying combinations of machine 
learning approaches. We found that selecting rich features and 
combining classifiers contribute to a better performance. 
 

II. DATASET DETAILS 
Our dataset is the National Center for Biotechnology 
Information (NCBI) Disease Corpus. It is available 
at http://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEAS
E/. It consists of 793 abstracts containing 2783 sentences, 
3224 unique disease names [30] and about 6,900 disease 
names in total. NCBI corpus annotators have annotated every 
sentence of the PubMed abstracts excluding organism names 
(e.g. human, virus and bacteria), gender (male and female), 
general terms (deficiencies and syndromes), biological 
references and nested disease. Annotations were done using a 
web base tool called PubTator [31]. The corpus annotations 
were assigned four categories based on the nature of the 
disease which consist of 3922 specific disease annotation, 
1029 disease class annotations, 1774 modifiers and 173 
composite mentions. The dataset is further divided into 
training, testing and development set as shown in the table 
below 
 

 
 
 
 
 
 

 

 
 
 

III. FEATURE SET 
 
To improve classification accuracy, selecting and defining the 
features is very important. Enriching the feature set can 
improve the performance of a particular machine learning 
algorithm. To train our algorithm we used the following 
features:  
 

1. Word Normalization 
2. Orthographic 
3. Part of Speech (POS) Tags 
4. N-grams 
5. Affixes 
6. Contextual  

Each of these 6 features is explained in more detail below:  

 
A. Word Normalization 

Word normalization attempts to reduce different form of 
words such as noun, adjective, verb etc. to its reduced/stemmed 
or root form . Common technique used for word normalization 
is the use of stemmer or lemmatizer, which stems word to its 
base form. Following are the various patterns analyzed which 
are reduced to its root form. 

• Colorectal cancer  colorect cancer 

• Endometrial cancer  endometri cancer 

• Alzheimer disease  alzheim diseas 

• Neurological disease   neurolog diseas 

• Arthritis  arthriti  

• Deficiency of DPD  defici of DPD 

• Premenopausal ovarian cancer premenopaus 
ovarian cancer 

• Neurodegeneration  neurodegener 

• Familial deficiency of the seventh component of 
complement  famili defici of the seventh compon of 
complement 

B. Orthographic Features 
 

Orthographic features are related to the geometry and 
indentation of the text such as capitalization, digits, numbers, 
numerics, single caps, all caps, two caps, punctuation, 
symbols etc. Such features are very effective in NER.  Use of 
orthographic feature has been advocated in [32-34].  
 

C. Part Of Speech (POS) Tags 
 

Usually POS tags help define the boundaries of phrases. In 
some scenarios POS tags have improved NER performance 
[34-35]. Since POS tagging is a challenging and 
computationally demanding process some researchers have 
not used it in NER [36]. We have improved performance by 
including POS tags. 
 

D. N-grams  
 

N-grams are defined by a sequence of n tokens or words. The 
most common n-gram is unigram because it contains a single 
token. Other n-grams are bigrams and tri-grams containing 2 
and 3 tokens respectively. Generally, N-grams are represented 
by the equation  ------- 
(1). 
From equation (1)  which 
represents unigrams,  while bigrams add one more word and 
can be represented as  
and hence tri-grams adds two more words 

  and hence other N-

Classes Training 
set 

Testing 
set 

Development 
set 

Modifiers 1292 264 218 
Specific 
Disease 

2959 556 409 

Composite 
Mention 

116 20 37 

Disease 
Class 

781 121 127 

Table-1: Description of Train, test and Development 
d  d i  hi  i  

http://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/�
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gram models can be found so on. In our experiment we only 
used bigrams and unigrams.  
 

E. Affixes 
 

Prefix and suffix features have significantly improved 
performance in the recognition of named entities. In [37] the 
authors have collected most frequent suffixes and prefixes 
from the training data, while in [38] the authors have grouped 
the prefixes and suffixes into 23 categories. In our experiment 
beside contextual features affixes has shown significant 
improvement.  
 

F. Contextual features 
 

Contextual features refer to the word preceding and following 
the named entities. Let  be the current token i.e. named 
entity, so for each feature we use two token instances around it 
i.e. . Now for each token  which 
appears in the text at location  the 
same features are calculated or more specifically c=  
…….. (2) Is the contextual window. In our experiment 
contextual features are the most important features in the 
recognition of NEs combined with affixes. Initially two 
contextual features followed by the current word were selected 
for the experiment. However, when realizing their importance 
four contextual features were selected. See equation 2, i.e. the 
two words preceding and the two words following the NE.   
 

IV. CLASSIFICATION SCHEME 
In this research Conditional Random Fields (CRF) was applied 
to the NCBI disease corpus. CRF is a probabilistic model for 
labeling sequential data; it’s widely used for part of speech 
tagging and named entity recognition [39, 40]. CRF has several 
advantages over the HMM and SVM. CRF is based on a 
discriminative model. Hence, it includes a rich feature set 
containing overlapping features using conditional probability. 
Given a sequence  and its 
labels , the conditional probability 

 is defined by CRF as follows [41]: 

               (2) 

Is a weight vector defined by  
These weights are associated with features having length equal 
to M. 

f is a feature function. Weight vectors (denoted by w) are 
obtained using the L-BFGS method [42]. In our experiment 
CRFSUITE has been used, which is the Python 
implementation of CRF [43]. 

V. RESULT AND DISCUSSION  
Table-2 shows the contributions of features and their effects on 
the performance of CRF. The feature set is divided into 

Contextual (Cc), Normalized (Nm), Unigrams (Ug), bigrams 
(bg), Affixes (Ax), Part of speech (POS) and Orthographic (O). 
Performance evaluation was carried out using standard metrics 
such as precision, recall  and F-score. 

Precision=  

Recall =  

F-score =  

Results obtained in Table-2  is based on applying 10 Fold 
cross validation on the training set. 

 
Feature combination precision recall F-score  

O 0.54 0.62 0.53 
O+ Nm 0.77 0.76 0.74 
O+ Nm+ POS 0.87 0.87 0.86 
O+ Nm + POS +Un 0.91 0.91 0.91 
O+ Nm + POS + Un + Bg 0.92 0.92 0.91 
O+ Nm+ POS +Un + Bg + Cc 0.92 0.92 0.92 
O+ Nm +POS +Un + Bg +Cc + Affixes 0.94 0.94. 0.94 

Table-2: Performance evaluation of Feature set. 

Table-2 shows combinations of different features for 
improving CRF performance. Oorthographic features were 
taken as a benchmark. The benchmark performance was an F-
score of 0.53, a precision of 0.54 and a recall of 0.62. Adding 
stemmed or normalized features improved the F-score to 0.74, 
the precision to 0.77 and the recall to 0.76. Adding part of 
speech tags further improved the F-score by 12 percent. 
Nevertheless, the part of speech tags were recently removed 
from the NER system. Unigram-based models have been the 
primary models in NER and hence we included them in our 
system. Adding the unigram features improved the F-score by 
5%. Adding bigram-features did not raise the overall F-score 
but improved precision and recall by 1%. Adding contextual 
features only improved the F-score slightly by 1% but had no 
effect on precision and recall. Combining all features, i.e. 
orthographic, normalized, part of speech, unigram, bigram, 
contextual features and affixes yielded 94% for precision, 
recall and F-score.  This performance was achieved with a 10-
fold cross-validation on the training set due to the rich feature 
selection.  

 Figure 1 shows the F-scores for each of the 4 classes.  In 
our experiment the following four classes were defined:  

• Disease Class = DC 

• Composite Mention = CM 

• Specific Disease = SD 

• Modifier = MD 



The F-scores of the training, development and testing sets are 
plotted in figure 1. The best F-scores could be achieved for the 
Modifier class.  For this class an F-score of 0.96 could be 
reached for the training dataset and for the development and 
testing dataset an F-score of 0.92 was obtained.  The second 
highest F-scores could be achieved for the Specific Disease 
class.  For this class the F-score of the training dataset was 
0.95, for the testing set it was 0.92 and for the development set 
it was 0.88. The third highest F-scores were achieved for the 
Disease Class. For this class the F-score for the training set was 
0.86 and the F-scores for the testing and development set were 
both 0.71. The F-scores were lowest for the Composite 
Mention class.  For this class the F-score for the training set 
was 0.72, for the testing set it was 0.52 and for the 
development set it was 0.62.  We observed a positive 
correlation between the size of the training sample sets and F-
score.  The largest training sample comprising of over 1,000 
was available for the Modifier class, followed by the Special 
Disease class, followed by the Disease Class having the second 
smallest training sample followed by the Composite Mention 
class, which had the smallest training sample.  The 
performance of machine learning algorithms depends on the 
size of the training sample. Too small training samples increase 
the risk of under fitting while too large training samples 
increase the risk for over fitting.  

 
Figure-1: F-score Comparision of Training, Testing and 
Development Data sets. 

We compared the performance of our approach, which is based 
on combining features with that of BANNER using the same 
dataset and classes. The results of this comparison are shown in 
table 3. Details about BANNER results can be found in [30]. 
The data in table 3 indicates that our approach yielded much 
higher F-scores than BANNAR for the training, testing and 
development set. The F-score obtained with our approach is 
10% higher for the training set, 7% higher for the testing set 
and 4% higher for the development set.  Hence, we clearly 
succeeded in outperforming BANNER.   

 

System Dataset Precision Recall F-Measure 

CRF 
Result 

Training  0.94 0.94 0.94 

Testing 0.88 0.89 0.88 

Development 0.86 0.86 0.85 

BANNER 
Result 

Training  0.86 0.82 0.84 

Testing 0.83 0.80 0.81 

Development 0.82 0.81 0.81 

Table-3: Comparison of BANNER and CRF results: For both 
Classifiers Precision, Recall and F-score are reported. 

Figure 2 also shows that our F-scores (depicted in blue) are 
much higher than those of BANNER (depicted in red) 

 
Figure-2: Plot of BANNER Vs Proposed Model 

 In summary it can be concluded that CRF based on 6 
features clearly outperformed BANNER.  This clearly shows 
that the sequential classifier CRF is well suited for classifying 
biomedical literature based on rich features.   

VI. CONCLUSION  
This paper presents a machine learning approach for human 

disease named entity recognition using the NCBI disease 
corpus. The system takes the advantage of background 
knowledge obtained from the selected features to better 
distinguish between the four classes. Improvements due to 
feature additions have been demonstrated. The highest 
improvement could be obtained when adding a second feature 
to the first. However, in order to evaluate the overall benefit for 
each feature, all possible combinations of feature additions 
need to be considered.    
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