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Abstract—Accurately representing demographic realities is a 
critical component in creating useful, agent-based epidemiological 
models of infectious disease. Synthetic ecosystems are generated 
from Census data microsamples in a statistically-sound manner to 
maintain population-level demographic characteristics. These 
highly detailed representations of populations are the basis of 
many advanced simulations of infectious disease epidemics. 
Creating a standard, machine-readable representation of 
synthetic ecosystem data would enable easier use and integration 
with epidemic simulator software. Here we describe an ontology-
based representation in Resource Description Framework (RDF) 
and Web Ontology Language (OWL) of version 1.0 of the 2010 
U.S. Synthetic Population database by RTI International. Our 
representation draws upon applicable classes from several 
reference ontologies, including the Ontology of Medically Related 
Social Entities (OMRSE). After failing to find suitable ontological 
representations of several key data elements in the Synthetic 
Population dataset, we created new classes in OMRSE for 
representing employment status, employee roles, workplaces, 
residences, households, and age measurements. We loaded a test 
RDF dataset (structured according to ontologies in OWL) of 
synthetic individuals into a commercial triple store (Stardog) and 
validated the representation with SPARQL queries. 
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I. BACKGROUND 
Disease transmission models (DTMs) are epidemiological 

models that predict the future course of infectious disease 
outbreaks under various assumptions. They are used to study 
which strategies for controlling outbreaks are potentially the 
most effective and thus for decision making during the course of 
an outbreak. For example, researchers have used them to study 
the effects of various vaccination control strategies on pandemic 
influenza [1, 2, 3] and to study the Ebola outbreaks in western 
Africa [4]. 

Agent-based disease transmission models (AB-DTMs) are a 
class of DTMs that represent every host individual in the 
population of interest, and sometimes individual vector 
organisms as well, to increase the realism of the simulations and 
thereby increase the accuracy of the predictions generated [5]. 
To accomplish these goals, the characteristics of the population 
represented in the AB-DTM must closely match the 
characteristics of the actual population under study. As reported 

by Grefenstette et al., accounting for differences in population 
density and sociodemographics indeed affects DTM results for 
different regions [5]. 

Census data are a key resource for matching simulated 
populations to actual ones [5, 6]. They include data about 
demographics, housing units, household composition, 
employment, school attendance, and other physical and social 
dynamics that have the potential to influence infectious disease 
transmission. However, record-level Census data are typically 
only available as microsamples of the overall Census data set. 
Therefore, there are typically representations of only 1%-5% of 
the population. This amount of data is insufficient for use with 
AB-DTMs that model 100% of a population. To overcome this 
limitation, researchers employ statistical methods to generate a 
full population dataset from the microsamples such that the 
synthetic population-wide dataset mirrors the actual population 
in aggregate in terms of various demographic characteristics 
such as sex, race, and marital status [6]. For example, the 
synthetic populations (or more generally, synthetic ecosystems, 
since housing units, workplaces, schools, etc. are also 
represented) available have percentages of blacks, women, 
employed individuals, students, etc. that statistically match the 
actual population. 

In addition to expanding microsample Census data to full 
population size, researchers incorporate significant additional 
information into synthetic ecosystems relevant to disease 
transmission [5, 6, 7]. For example, although Census data 
capture employment and school attendance statuses, they do not 
associate individual persons to individual workplaces or 
schools.  However, for AB-DTMs, these linkages are critical for 
studying whether and how well school closures and workers’ 
decisions to stay at home (whether made individually or as a 
matter of public health or employer policy) control disease 
transmission.  Therefore, a significant component of extant 
synthetic ecosystems is data about individual school and 
workplace assignment. 

Researchers typically make these synthetic ecosystems 
available as delimited text files in a format suitable for loading 
into tables in a relational database management system, with 
limited semantics and simple integer values for representing 
categories such as race and gender. For example, see the 
extensive collection of synthetic ecosystems available at [8].  



In this work, we make available full-population synthetic 
ecosystem data as Resource Description Framework (RDF) [9] 
triples. It differs from past efforts to include Census data in 
government linked open data (LOD) [10] in at least two key 
respects. First, we took a realist ontological perspective. To our 
knowledge, our work is the first to attempt to represent the 
necessary entities to cover a Census-derived dataset from a 
realist perspective. We were able to reuse significant 
components of other realist-based ontologies, but we also 
needed to carry out additional ontology development to 
accomplish the task. Second, to our knowledge, we are the first 
to attempt representing an entire population from Census data in 
a Semantic Web framework using synthetic ecosystem data 
created for AB-DTMs. 

In previous work, we created the Ontology of Medically 
Related Social Entities (OMRSE) to handle demographics such 
as those represented in Census and electronic health record 
(EHR) data [11]. OMRSE is a realist representation of medically 
related social entities. Social entities are those entities that exist 
in reality but which would not exist outside of a social context. 
For example, the role of a doctor is distinct from the human 
being who bears that role. This role exists within the healthcare 
system and confers rights and responsibilities associated with 
treating and diagnosing a patient. It is the result of social 
agreements and interactions rather than of the physical stuff that 
makes up the natural world. It is realized through various 
processes of diagnosing, treating, prescribing, etc. We develop 
OMRSE in accordance with OBO Foundry best practices [12] 
and reuse classes from several other ontologies including Basic 
Formal Ontology [13], NCBI Taxonomy [14], Information 
Artifact Ontology [15], and the Document Acts Ontology [16].  

Given the importance of school and workplace assignment 
and the data about them in synthetic ecosystems, it was critical 
to represent additionally the roles of students and employees. 
Furthermore, it was necessary to capture the relationships of 
these roles to the organizations that create them and to the 
individual facilities where they are realized.  We also report here 
on the extent to which pre-existing ontologies fulfilled this need 
vs. the additional ontology development required. 

II. METHODS 
We reviewed the files generated by the Research Triangle 

Institute’s Synthia synthetic population generator [6] in 
conjunction with its documentation. Because Synthia uses U.S. 
Census files and public-use microsample (PUMS) data, we also 
reviewed U.S. Census definitions of the variables in those data.   

We reviewed each of the data fields in the following subset 
of Synthia files: synth_people.txt, synth_households.txt, 
schools.txt, workplaces.txt. Through an iterative process, we 
analyzed and described each data field and determined whether 
to include the field in this work. The most common reason we 
excluded a field from the final ontological representation was 
redundancy. For example, we excluded data fields from 
synth_households.txt, schools.txt, and workplaces.txt that 
represented the total number of individuals assigned to a 
household, school, or workplace since these values could be 
derived by counting in the underlying data. Other fields were 
excluded because they were determined to be of lesser 
immediate importance to epidemiologic simulation, such as the 

prek, kinder, gr01-12, and ungraded fields in schools.txt, which 
represent the total number of students in different grade 
categories in a given school. 

We then determined whether each included data field could 
be accurately modeled using existing ontological classes from 
OMRSE or other established ontologies, or whether new classes 
were necessary. We created graphical models of how the data 
would be structured ontologically as an initial specification for 
transforming the data into RDF, as well as to identify any new 
classes that we would need to create. These graphical models 
depict the individuals, relationships between pairs of 
individuals, and classes to which individuals belong. These 
diagrams included specifications for associating people with 
their workplaces and schools as represented in the dataset.  

We then manually created these individuals and 
relationships for a single set of individuals in one household, 
including their associated school and workplace, in a Web 
Ontology Language (OWL) [17] file that imported OMRSE and 
the Apollo-SV ontology [18] (the latter was a choice of 
convenience because it already brings together ontological 
representations from numerous ontologies, including its own, in 
the domain of epidemic simulation). This OWL file served as 
the machine-readable specification for converting Synthia text 
files into RDF triples. Once we had this machine-readable 
specification, we created a software application that performed 
this conversion, and applied it to the county-based Synthia files 
for Alachua County, FL and Miami-Dade County, FL. This 
application is freely available at: 
https://github.com/ufbmi/synthia-rdf-converter. We then loaded 
the RDF triple datasets output by the application into an instance 
of the Stardog triple store. 

A. New Ontology Classes in OMRSE 
In accordance with OBO Foundry best practices, we reused 

as many classes and object properties from other ontologies as 
we could to generate the OWL file. After importing existing 
classes from OBO ontologies, it was still necessary to create new 
classes to represent several key elements of the Synthetic 
Population dataset.  Specifically, we created new classes in 
OMRSE to represent employment status, employee roles, 
workplaces, residences, households, and age measurements. 

B. Queries of the RDF Dataset 
We developed queries of the RDF datasets to validate our 

representations as well as to identify population characteristics 
that are likely to influence disease transmission. If these 
differences are signficant among regions, they could influence 
the choice of DTM used to study an infectious disease control 
strategy.  For example, if two regions differ substantially in 
household and workplace composition, size of school-aged 
population, etc., an AB-DTM is likely to be the better choice. 
Furthemore, these queries could also be done as part of a 
simulation experiment to help explain differing results among 
geographical regions in incidence rates, peak dates, and choice 
of infectious disease control strategies output by the simulator. 

Because the sizes of households, schools, workplaces, and 
the amount of overlap among them (e.g., households with an 
employee in the workplace and student in a school) influence 
disease transmission and thus potentially DTM results, we 



developed queries to find (1) the average numbers of individuals 
per household, workplace, and school; (2) the number and 
percentage of households with both an employee and a student; 
and (3) the number and percentage of workplaces with at least 
one employee who lives with a student. We executed these 
queries against both the Alachua County and Miami-Dade 
County datasets to contrast these locations based on 
characteristics relevant to disease transmission. 

We loaded the RDF data into an instance of version 3 of the 
Stardog triple store from Complexible, Inc.  This triple store runs 
on an Amazon Web Services r4.large instance (2 CPUs and 
15.25GB of RAM).  Queries were submitted from the Stardog 
command line on the same server on which the triple store was 
running.  The timings we report here are from the Stardog 
command line output. 

III. RESULTS 

A. RDF Representations 
To accurately model the U.S. Synthetic Population 

Database, we created RDF representations of the data fields 
relating to individual persons, households, housing units, 
workplaces, and schools. We created graphical models of these 
representations (Figs. 1-4).  Fig. 2 illustrates our representation 
of humans in a household. Fig. 3 illustrates our representations 
of workplaces and employment. 

Many ontologies classify age as a physical quality, rather 
than as a measurement of some temporal interval with respect to 
the time the measurement was made. The Ontology for 
Biomedical Investigations (OBI) [19] has a class ‘age 
measurement datum’ that has a class restriction of being is about 
some age quality.  The age quality class, in turn, comes from the 
Phenotypic Quality Ontology (PATO).  By contrast, we 
represent age as a measurement of a one-dimensional temporal 
region that is occupied by a process that is part of the history of 
some object (Fig. 4).  

In analyzing Synthia data fields, we found that Synthia 
conflates households and housing units, despite being based on 
U.S. Census data that make the distinction clear. For example, 
Synthia assigns to households both the physical properties of a 
housing unit, such as latitude and longitude, as well as properties 
about the household as a social unit, such as total household 
income, race and age of the head of the household, and 
household size. Our approach distinguishes household from 
housing unit and asserts that housing units are individuated by 
their residence functions and that a household realizes the 
housing unit’s residence function by living there. In OMRSE, 
we define a household as a human or collection of humans that 
occupies a housing unit by storing their possessions there and 
habitually sleeping there thereby participating in the realization 
of its residence 

Fig 3. Graphical Model of RDF Specification of a Person’s Relation to a Workplace. 

 

 

Fig 1.  Key for Graphical Models. 

Fig 2.  Graphical Model of RDF Specification of Household. 



function, and add the following description logic equivalence 
statement:  

household =def ('Homo sapiens' or 'collection of humans') 
and ('participates in' some (process and (realizes some 

'residence function')))   

where residence function is defined as a function that inheres in 
a material entity and is realized by protecting persons and their 
possessions from weather and by some person or group of 
persons habitually sleeping in at least one site that is contained 
by that material entity.  

B. New OMRSE Classes 
We created a total of 11 new classes in OMRSE to support 

the representation of synthetic ecosystems. Each class has a 
textual definition adapted from U.S. Census. One major 
adaptation of the definitions was to put them in Aristotelian form 
with the name of the direct superclass as part of the definition. 
Other adaptations were necessary to eliminate ambiguity and to 
reuse other defined ontology terms.  OMRSE is a publicly-
available resource at the following permanent URL: 
http://purl.obolibrary.org/obo/omrse.owl. 

C. RDF Datasets and Queries 
The Alachua county dataset comprised ~13M triples, and the 

Miami-Dade County dataset comprised 133M triples (Table 1). 
The population totals for both counties are slightly lower than 
the 2010 Census numbers on which the Synthia datasets were 
based. The reason is that we did not incorporate group quarters 
such as nursing homes and military barracks, which is future 
work.  

The execution time for the SPARQL queries ranged from a 
few milliseconds to 41 seconds.  The longest of these was the 

query that counted all workplaces with at least one employee 
who lives at home with at least one student.   

The housing unit totals for both counties match the 2010 
Census numbers. The data show distinct differences, as 
expected, between Miami-Dade—a large urban county—and 
Alachua—a small county (in terms of population) where a large 
university is located.  Miami-Dade has a larger household size 

 Alachua Miami-Dade 

Triples 13,315,702 133,973,948 

People 233,549 2,448,514 

Schools 64 442 

Workplaces 13,895 180,773 

Housing Units 100,517 867,252 

Average Household Size 2.32 2.82 

Employees per workplace 8.05 6.13 

Students per school 584 1070 

Workplaces that overlap with a 
school 7895 (56.8%) 121,951 (67.5%) 

Households with both an  
employee and a student 20,244 (20%) 255,614 (29.5%) 

   

Fig  4.  Graphical Model of RDF Specification of Age. 

TABLE I. SUMMARY STATISTICS FOR TWO COUNTY-BASED 
DATASETS 

 



and school size, a greater percentage of workplaces with at least 
one employee that lives with at least one school student, and a 
greater percentage of households with at least one workplace 
employee and school student.  By contrast, Alachua has a higher 
average workplace size, even when the University of Florida is 
excluded from consideration.  These differences are likely to 
impact simulator results—Miami-Dade will often have a larger 
incidence and prevalence of infectious disease that is spread 
from person to person such as influenza in the absence of control 
measures. Infectious disease control measures designed to 
reduce school and workplace transmission—such as school 
closure, voluntary or imposed absenteeism from work, and 
vaccination of the school and / or workplace population—are 
likely to have a greater predicted effectiveness (and thus perhaps 
actual effectiveness) in Miami-Dade than Alachua.   

D. Availability of Materials 
All materials created for this paper—the graphical models 

(including additional ones not shown here), the SPARQL 
queries, and the OWL files with the entire datasets for Alachua 
and Miami-Dade counties—are freely available under a 
Creative Commons Attribution (CC BY 4.0) license at: 
http://tinyurl.com/syneco-queries. 

IV. DISCUSSION 
 We developed a Semantic Web and realism-based 
representation of the entire populations of two counties in 
Florida. We built SPARQL queries to assess differences 
between the two populations that are likely to influence disease 
transmission, as well as the results of experiments conducted 
using DTMs. The approach is generic and could be applied to 
any other synthetic ecosystem data, including for additional 
geographical regions. The queries are generic and could be 
applied to any additional county-based datasets (or datasets at 
other levels of geographical granularity such as Census tract) 
similarly transformed via our processes and representations. 

We have demonstrated the feasibility of using Semantic Web 
technologies for representing entire populations, and in 
particular for representing synthetic ecosystems for use in AB-
DTMs. Additionally, through additions to OMRSE and the 
creation of RDF synthetic datasets, we have developed some of 
the resources necessary to transform other U.S. Census data into 
Semantic Web representations. In so doing, we have made 
explicit much of the semantics that are implicit in those data and 
the synthetic ecosystems that are based on them.  It is our 
conjecture for future work that the explicit semantics improve 
the ease with which synthetic ecosystems can be expanded to 
incorporate additional biological, social, and abiotic ecosystem 
elements. 

Although we developed this work in the context of agent-
based DTMs, this resource and approach could also be leveraged 
for social network analysis due to the graph-based nature of 
RDF.  For example, one could construct queries for finding hubs 
in the network and people or places that a set of people have in 
common. Furthermore, DTMs are increasingly taking into 
account social networks as part of the synthetic ecosystem itself 
(for example, see Frias-Martinez et al. [20]). Network-based 
approaches and graph representations such as our RDF-based 

one here are more extensible and suitable for representing these 
networks. 

Future work includes expanding the specification to include 
data related to group quarters, which will require additional 
ontological analysis and ontology development. 
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