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Abstract—We describe an approach for performing qualita-
tive, systems-level causal analyses on biosimulation models that 
leverages semantics-based modeling formats, formal ontology, 
and automated inference. The approach allows users to quickly 
investigate how a qualitative perturbation to an element within a 
model’s network (an increment or decrement) propagates 
throughout the modeled system. To support such analyses, we 
must interpret and annotate the semantics of the models, includ-
ing both the physical properties modeled and the dependencies 
that relate them. We build from prior work understanding the 
semantics of biological properties, but here, we focus on the se-
mantics for dependencies, which provide the critical knowledge 
necessary for causal analysis of biosimulation models. We de-
scribe augmentations to the Ontology of Physics for Biology, via 
OWL axioms and SWRL rules, and demonstrate that a reasoner 
can then infer how an annotated model’s physical properties 
influence each other in a qualitative sense. Our goal is to provide 
researchers with a tool that helps bring the systems-level network 
dynamics of biosimulation models into perspective, thus facilitat-
ing model development, testing, and application. 

Keywords—automated inference; biosimulation; biological 
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I. INTRODUCTION & BACKGROUND 
Biomedical researchers develop computational models to 

understand and predict the dynamics of biological processes. 
With increasing access to computational power and systems-
level biological data, these models continue to grow in size and 
complexity. There is therefore a growing need for informatics 
tools that will help researchers quickly obtain system-level 
perspectives on these models so they can readily ascertain a 
model’s architecture, its underlying assumptions, and how its 
components interact. Additionally, as models become more 
complex, the time required to generate simulation results can 
impede research. Motivated by these needs, we have developed 
an approach for performing qualitative causal analyses over 
biosimulation models that leverages the formal semantic struc-
ture of the Ontology of Physics for Biology (OPB [1], [2]), the 
Semantic Simulation (SemSim) framework [3], [4], and auto-
mated ontological inference. Our aim is to develop software 
that will allow users to quickly investigate the qualitative ef-
fects of perturbation experiments on biosimulation models and 
to identify perturbations that would influence a model element 
of interest. With the former, users can investigate the impact of 
a shift in the value of a model variable and ascertain the sys-
tem-wide consequences. For example, a user investigating a 
metabolism dynamics might ask, “What are the consequences 
of increasing glucose concentration in the model?” With the 

latter, a user can identify which model variables, if perturbed, 
would shift a variable of interest in a given direction.  In this 
case a user might ask, “Which perturbations will cause glucose 
concentration to increase?” Such thought experiments are a 
routine and valuable tool researchers use for understanding and 
validating hypotheses derived from their empirical studies. We 
anticipate that giving modelers this systems-level perspective 
will help guide systems biology experiments and drug target 
identification, as well as model-based clinical decision making. 

To perform our qualitative causal analyses, we used auto-
mated inference to programmatically identify the dependencies 
(e.g., chemical reaction rate laws, conservation laws) used in a 
set of test models and the qualitative relations between the 
physical properties (e.g., chemical concentrations, fluid pres-
sures) that participate in those dependencies. Using this infor-
mation, we then identify how an increment or decrement in a 
physical property propagates to other properties in the model. 
For example, by semantically identifying the instances of first-
order mass-action rate laws used in a chemical network model, 
a reasoner can infer how the physical properties involved in 
those laws interact, qualitatively. We can then determine how a 
reaction rate will, say, respond to an increase in the amount of 
one of its reactants. While running iterative simulations on 
isolated physical dependencies might also be used to accom-
plish this task, it is difficult to determine appropriate parameter 
ranges for such simulations so that the approach generalizes 
across physical scales and modeling domains. We therefore 
developed an ontology-based approach for automatically clas-
sifying dependencies and for characterizing the roles that the 
properties in those dependencies play.  

Here we describe our qualitative reasoning approach and 
demonstrate it with a published chemical network model. Our 
approach includes two steps. First, we classify physical de-
pendencies within the OPB and use reasoning to characterize 
the roles played by the properties in such dependencies. Se-
cond, we apply a simple algorithm that propagates perturba-
tions in physical property values (increments or decrements) 
through the dependency network. To implement the first step, 
we augmented the OPB with a set of Web Ontology Language 
(OWL) axioms and Semantic Web Rule Language (SWRL) 
rules necessary for characterizing how the physical properties 
in a dependency influence each other, qualitatively. Thus, 
when we annotate a biosimulation model against the OPB, we 
can apply a standard OWL reasoner to infer the information 
needed to trace perturbations throughout a model’s math 
dependency network. 
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Fig. 1. Workflow by which SemGen imports and parses biosimulation model source code (right) and abstracts a SemSim model (in OWL) which is 
annotated against instances of OPB:Physical property classes. By combining the knowledge in the OPB and the SemSim model we instantiate a “math 
dependency map” which we traverse to propagate qualitative perturbations of physical property values. 

 
A. Model semantics and the Ontology of Physics for Biology 

Biosimulation models are becoming more readily available 
as public repositories such as BioModels [5] and the Physiome 
Model Repository [6] grow in size, and as standardized 
modeling formats such as the Systems Biology Markup 
Language (SBML) [7] and CellML [8] gain wider adoption. To 
make repositories more useful and amenable to automated 
inference, a first step is to annotate model elements to provide 
explicit semantics for the code-level representations of these 
models. Although standard modeling formats often support 
biological semantic annotation, little research has been carried 
out to describe the semantics of the physical dependencies (the 
mathematical laws used to relate values of physical properties 
to each other) being modeled. We must make these associa-
tions explicit because our qualitative causal analyses require an 
explicit representation of how physical dependencies determine 
the influence that physical properties have on each other. We 
therefore annotate the semantics of a model’s mathematical 
relationships using the OPB, which includes a taxonomy of 
physical dependencies and properties used in biosimulation 
models across biological scales [1], [2].  

The OPB is a reference ontology that aims to provide a 
comprehensive, formal representation of the concepts used in 
modeling biophysical processes. It includes, for example, an 
OPB:Physical property taxonomy for annotating model 
variables (e.g., OPB:Charge amount for electrical charges) and 
an OPB:Physical dependency taxonomy (e.g., OPB:Electrical 
resistive dependency for Ohm’s Law) for representing the 
biophysical meaning of a model’s mathematical dependencies. 
Previously, we have leveraged the OPB for multi-scale model 
integration tasks [4], [9]. As shown in the middle panel of Fig-
ure 1, we use OPB:Physical property classes to annotate com-

putational data structures that represent the quantitative values 
of model variables. OPB:Physical property is a dual inher-
itance hierarchy that distinguishes dynamical property type 
(e.g., forces vs. flow rates vs. amounts) and dynamical domain 
(e.g., fluid domain vs. chemical domain vs. electrical domain). 
Thus, a variable representing blood flow rate in the aorta, say, 
is semantically distinct and non-conformable with a variable 
for cytosolic glucose concentration. 

The OPB:Physical dependency hierarchy represents math-
ematical dependencies between physical property values. This 
hierarchy is also dual-inheritance; the OPB dependencies are 
sub-classed according to dynamical domain and by dynamical 
dependency type. For example, an instance of OPB:Resistive 
dependency represents an occurrence of a process governed by 
an analog of Ohm’s Law. Thus, in the electrical domain an 
electrical current depends on an electrical voltage and the elec-
trical resistance in the conducting pathway: I=V/R, classically. 
Likewise, in the fluid domain, a fluid flow rate depends on a 
pressure difference and a fluid flow resistance (an analog of 
electrical resistance).  In the OPB schema, each OPB:Physical 
property instance has two key relations. First, it is linked by a 
hasPhysicalProperty relation to an instance of the entity or 
process that bears the property, and by a hasPropertyPlayer to 
the OPB:Physical dependency instance according to the model 
code. In Section II we describe extensions to the 
OPB:hasPropertyPlayer relations required for tracking proper-
ty value perturbations through a modeled system. 

B. The SemSim framework 
Based on the biophysical semantics of the OPB, we estab-

lished the SemSim model framework for annotating and repre-
senting the mathematics of simulation models (Figure 1). Each 
SemSim model represents the computational structure of a 



model and provides a logical framework for annotating its var-
iables and computations in terms of OPB classes. Applications 
of the SemSim framework are limited in our work to the do-
main of discrete causal models written and archived using 
ordinary differential equations. In prior work, we have created 
SemSim models to annotate, decompose, and recompose 
models in any of several modeling languages: SBML, CellML, 
and JSim’s Mathematical Modeling Language [10]. To 
accomplish this we have developed SemGen [4], [9], a Java-
based semantic modeling application that automatically creates 
SemSim models from models coded in these languages. The 
SemSim framework relies on composite annotations [3] to 
formally describe the biological meaning of model elements, 
and SemGen provides tools for creating these annotations de 
novo and for auto-generating them from annotations present in 
curated models such as the those in BioModels. Each 
composite annotation consists of an instance of an 
OPB:Physical property class that identifies the physical 
property type of the variable and is classifiable within the 
OPB:Physical property hierarchy. As we describe below, this 
critical feature allows us to automatically identify the 
mathematical dependencies as pathways by which 
perturbations propagate throughout a set of modeled properties.  

II. METHODS 
To support causal qualitative reasoning, we must augment 

the OPB, apply a standard OWL reasoner to produce the math 
dependency map, and then apply an algorithm to determine 
how qualitative perturbations propagate through a model’s 
mathematical network. There are two types of semantic aug-
mentations we add to the OPB: axioms that define dependen-
cies based their property players, and axioms and rules that 
determine which properties are positive or negative players in a 
dependency. 

A. Classifying physical dependencies in the OPB 
The first steps in performing our qualitative analyses are to 

convert a model into the SemSim format using SemGen and 
then annotate its physical properties against the OPB. As we 
will describe below, this step allows us to then classify the 
physical dependencies in the model and automatically infer the 
qualitative influence that physical properties have on each oth-
er. Many of the models we tested for this study were curated 
SBML models from BioModels. For these we were able to use 
SemGen to automatically annotate the model’s physical prop-
erties against OPB classes, the physical entities they are prop-
erties of, and the processes in which the entities participate. We 
then leveraged this critical information to identify the qualita-
tive role that the properties play in the model’s dependencies. 

Since publicly available models do not contain annotations 
against the OPB that indicate which mathematical dependen-
cies are used in a model, we developed a method for automati-
cally classifying a model’s physical dependencies within the 
OPB hierarchy. To provide an example of a physical depend-
ency and how we classify it, consider the law of fluid compli-
ance, often used in hemodynamic models: P = V/C. Here P is 
the transmural fluid pressure in a compartment, V is the com-
partment fluid volume, and C is the compartment compliance. 
(Modelers may choose to use a fluid elastance instead of com-
pliance as they are reciprocal.) This law is analogous to the law 

of capacitance used in electrical dynamics models. Instead of 
pressure, volume and compliance, the electrical analog relates 
voltage, charge, and capacitance. As shown in Figure 2, these 
two physical dependencies are subclasses of OPB:Capacitive 
force dependency, which subsumes analogous versions of this 
law for each physical domain represented in the OPB.  

Leveraging this hierarchical structure, our approach for au-
tomatically identifying the physical dependencies used in our 
test models was to first create logical definitions in the form of 
OWL equivalent class expressions for higher-level OPB physi-
cal dependency classes. These statements define physical de-
pendencies in terms of the physical properties that participate 
in them. We term these participating physical properties “prop-
erty players”, language that is reflected in the object property 
names used to construct our logical class definitions. For ex-
ample, we used the following equivalent class expression to 
define OPB:Capacitive force dependency, presented here in 
Manchester style syntax: 
((hasPropertyPlayer some Capacitance) or  
(hasPropertyPlayer some Elastance))  
and (hasPropertyPlayer some 'Amount property')  
and (hasSolvedPropertyPlayer some 'Force proper-
ty') 

 
We then applied simple equivalent class axioms to define 

the domain-specific subclasses of OPB:Capacitive force de-
pendency. For example, the equivalency axiom for OPB:Fluid 
capacitive dependency is 
'Capacitive force dependency'  
and (hasPropertyPlayer only (hasPhysicalDomain 
some 'Fluid kinetic domain')) 

 
This captures the knowledge that OPB:Fluid capacitive de-

pendency is an OPB:Capacitive force dependency that only 
relates physical properties from the fluid kinetic domain. 

B. Characterizing the qualitative influence among properties 
To represent how the different physical properties in a de-

pendency will react to a perturbation in one of those properties, 
we first identify the physical property that is the “output” of the 
dependency, as represented in the original SemSim model. 
SemSim models currently represent equations as having one 
output variable on the left hand side (LHS) and the expression 
that solves it on the right hand side (RHS). We use OWL ob-

 
Fig. 2. Location of Capacitive force dependency in the OPB class hierarchy. 

 



ject property axioms such as Dependency_A <hasSolvedProp-
ertyPlayer> Property_B to capture the knowledge that Proper-
ty_B is on the LHS of Dependency_A. Physical properties on 
the RHS that produce the same response in the solved property 
when increased or decreased are termed “positive property 
players”.  Properties that produce a change in the opposite di-
rection are termed “negative property players.” This 
knowledge is captured using object property statements on the 
physical dependency individuals such as Dependency_A 
<hasPosPropertyPlayer> Property_C. For example, the fluid 
volume property in the fluid compliance law mentioned above 
is a positive property player in the dependency; if increased, 
the solved fluid pressure property on the LHS also increases. 
Conversely, the fluid compliance property is a negative proper-
ty player in the dependency: if it is increased, fluid pressure 
decreases. Because SemSim models do not include these axi-
oms, we use class restriction axioms on OPB dependency clas-
ses, a set of SWRL rules, and a reasoning engine to generate 
them automatically. For example, we added the following class 
restriction to OPB:Capacitive force dependency: 
(hasPosPropertyPlayer exactly 1 'Amount property') 
and (((hasPropertyPlayer exactly 1 Capacitance)  
and (hasNegPropertyPlayer exactly 1 Capacitance))   
or ((hasPropertyPlayer exactly 1 Elastance)  
and (hasPosPropertyPlayer exactly 1 Elastance)))  

 
This axiom indicates that if a physical dependency individ-

ual is classified as an OPB:Capacitive force dependency, it 
must have exactly one positive property player that is an 
OPB:Amount property (e.g., fluid volume or electrical charge), 
along with one negative player that is an OPB:Capacitance 
(e.g., fluid compliance or electrical capacitance) or one positive 
player that is an OPB:Elastance (e.g., fluid elastance or electri-
cal elastance). In combination with the equivalent class axioms 
mentioned above, an automated reasoner can infer from these 
axioms that if a physical dependency is an OPB:Capacitive 
force dependency and it has one fluid compliance property 
player, then the compliance is a negative property player. As 
described in Section III, we can then use this knowledge to 
determine how a perturbation in the compliance will affect the 
fluid pressure property in the dependency.  

These class restriction axioms are effective for characteriz-
ing properties as positive or negative players when the proper-
ties differ in type, as in our fluid compliance law example. 
However, they are less effective when multiple instances of the 
same property type are on the RHS of a dependency. For ex-
ample, the mass conservations equations used to compute fluid 
volume changes in hemodynamic models or the species 
amounts in chemical network models often have multiple flow 
rates on the RHS. These rates may be positive or negative 
players, depending on the model’s formulation. For example, 
the conservation equations that determine chemical species 
amounts are often formulated by summing the rates of the reac-
tions that produce a species and subtracting those that consume 
it. The rate of a reaction that consumes a chemical would be a 
negative player in the dependency, while the rate of a reaction 
that produces it would be a positive player. To determine the 
polarity of the property players in these dependencies, we cre-
ated five SWRL rules that leverage the model’s underlying 
biological semantics. As an example, the following rule identi-

fies negative players on the RHS of mass conservation equa-
tions: 
hasSolvedPropertyPlayer(?dep1, ?prop1),  
hasPropertyPlayer(?dep1, ?prop2),  
physicalPropertyOf(?prop1, ?ent1),  
hasSource(?process, ?ent1),  
physicalPropertyOf(?prop2, ?process)  
   -> hasNegPropertyPlayer(?dep1, ?prop2) 

 
The rule states that if a physical dependency solves for a 

property of a physical entity, and there is a property of a pro-
cess that consumes the entity on the RHS, then the latter prop-
erty is a negative player in the dependency.  As a specific ex-
ample, this rule indicates that for all reactants in a reaction, the 
reaction rate is a negative player in the conservation equation 
that determines the amount of the reactant. Thus, if the reaction 
rate increases, the reactant amount decreases. We created a 
similar rule for dependencies that solve for the amount of 
products involved in reactions. In this case, the reaction rate is 
a positive player in the dependency. We also created three ad-
ditional SWRL rules to identify the polarity of property players 
in dependencies that solve for reaction rates:  

1. If a process rate is solved using the property of a thermo-
dynamic source of that process, then the source property 
is a positive player 

2. If a process rate is solved using the property of 
a thermodynamic sink of that process, then the sink prop-
erty is a negative player 

3. If a process rate is solved using the property of a mediator 
of that process, then the mediator property is a positive 
player 

Rule 1, for example, identifies reactant concentrations on the 
RHS of first-order reaction rate equations as positive players in 
those equations; as reactant concentration increases, so does 
the reaction rate. We achieved our inference goals applying 
only a very few SWRL rules because the basic dependency 
relations are declared at a superclass level in the OPB:Physical 
dependency hierarchy. Thus, a single SWRL rule suffices for 
both fluid and electrical analogs of Ohm’s Law (i.e., 
OPB:Resistive flow dependency) or for Hooke’s Law (i.e., 
OPB:Capacitice force dependency;  see Figure 2) as examples. 

C. Automatically inferring math dependency maps 
To automatically classify the dependencies in a model and 

identify their positive and negative players, we first automati-
cally instantiated the SemSim model’s physical dependencies, 
properties, entities and processes as OWL individuals in our 
augmented OPB. Properties were asserted as individuals in 
whichever OPB:Physical property class was used in their com-
posite annotation. Dependencies, entities and processes were 
asserted as individuals in the top-level OPB classes represent-
ing these concepts.  Using the SemSim object model underly-
ing SemGen, we automatically identified which dependencies 
involved which property players. As mentioned above, we as-
serted this knowledge by applying hasSolvedPropertyPlayer 
and hasPropertyPlayer object property axioms on the depend-
ency individuals. We then used HermiT [11] version 1.3.8 to 
programmatically classify the resulting ontology and infer 
which properties were positive players in the model’s depend-
encies and which were negative. This single classification step 



simultaneously reasons over the new OPB OWL class re-
strictions and the SWRL rules described above to generate a 
math dependency map for that model. In the next section, we 
describe how we used the inferred information from the rea-
soner to traverse this map and determine the outcomes of per-
turbation experiments. 

III. QUALITATIVE PERTURBATION EXPERIMENTS 
The inferences produced by the HermiT reasoner include 

the knowledge necessary to determine how an increment or 
decrement in a given physical property within a dependency 
will affect the property that is solved by the dependency. To 
investigate the system-wide effects of such perturbations, we 
developed a Java-based algorithm that takes as input a property 
perturbation (an increment or decrement), and determines how 
that perturbation propagates throughout the math dependency 
network of the model. This algorithm, similar to those used in 
colored petri net analyses, is based on the “PathTracing” func-
tion of the Chalkboard software for composing and investigat-
ing the dynamics of network models [12]. Our algorithm be-
gins by identifying the dependencies in which the perturbed 
property participates, determines how the perturbation affects 
the dependency’s solved property based on the perturbed prop-
erty’s positive/negative player status, records how the solved 
property is perturbed, then continues iteratively by identifying 
the dependencies in which the solved property participates. 
Iteration continues until the algorithm returns to the original 
perturbed property or, in the case of negative feedback loops, if 
it finds that a physical property is both increased and decreased 
by a perturbation. The algorithm then lists the physical proper-
ties that are increased by the perturbation, those that are de-
creased, and those that are influenced in both directions (an 
ambiguous effect). 

By simply reversing this algorithm and traversing the math 
dependency map in the opposite direction, we are also able to 
investigate which perturbations will cause a property of interest 
to increase or decrease. In this case, the inputs to the algorithm 
are a property of interest, and whether it is increased or de-
creased. The algorithm then lists how to perturb the other prop-
erties in the model to shift the property of interest in the speci-
fied direction. 

A. Scope and caveats 
Before describing the performance of our qualitative infer-

ence methods, we want to properly position our work and tools 
in the context of biological research and modeling. Our aim is 
to offer a “thinking tool” of practical use to those who struggle 
to understand the behavior of complex causal networks. From 
our own experience, both investigators and students routinely 
explore the behavior of these systems by tracing event paths 
through both informal and consensus network representations. 
Thus, our methods are intended to formalize, illustrate and 
explore biological hypotheses. 

We are well aware of important assumptions and limita-
tions to the qualitative pathway analysis that we have imple-
mented. First, we assume that the system is at a stable operat-
ing point far away from dynamical instabilities and that pertur-
bations are infinitesimal. Thus, we assume that perturbations 
propagate through the system without changing the signs of the 

partial differentials between dependent variables. Even with 
this assumption, however, ambiguities can arise when an in-
crement converges with a decrement to produce an ambiguous 
result resolvable only by quantitative analysis. That being said, 
an ambiguity resulting from feedback may be interpretable: a 
positive feedback loop will only reinforce the originating per-
turbation while one might be able to assume that a negative 
feedback signal is quantitatively less than the originating signal 
and, hence, can be ignored by the propagation algorithm. How-
ever, we would caution that the longer the pathway, the less 
confidence one might have in the result, especially in highly 
coupled networks.  

B. Example perturbation experiment 
Figure 3 illustrates the results of our approach. It shows the 

outcome of a qualitative perturbation experiment on BioModel  
#313, an SBML-encoded model that simulates the Janus kinase 
signaling pathway in a primary mediastinal B-cell lymphoma 
cell line. In the model’s source publication [13], the authors 
used numerical sensitivity analysis to identify the STAT5 pro-
tein as a potential drug target that could reduce the amount of 
CD274, an mRNA associated with cell proliferation. Guided 
by this result, we tested whether our qualitative approach 
would generate similar results. We converted the SBML model 
into the SemSim format, used automatic classification to iden-
tify the positive and negative players in the model’s dependen-
cies, and performed a perturbation experiment where we de-
creased STAT5. Automatic classification of the model via 
HermiT finished in four seconds on a MacBook Pro 2.8 GHz 
Intel Core 2 Duo laptop. Performing the perturbation on the 
classified ontology’s math dependency network is much faster, 
finishing in 33 milliseconds. As shown in Figure 3, the net-
work-wide results of the perturbation experiment include a 
decrease in CD274 mRNA. 

IV. DISCUSSION 
This study demonstrates how the comprehensive, hierar-

chical knowledge contained in the OPB can be leveraged to 
automatically identify physical dependencies in models and 
then characterize how the physical properties in these models 
influence each other. This inferred knowledge can form the 
basis of qualitative perturbation experiments, as reported here, 
but it could also potentially be used to help guide and/or auto-
mate the model annotation process. For example, once a mod-
el’s physical dependencies are classified within the OPB, this 
knowledge could be applied to flag inconsistent model annota-
tions and also suggest which OPB terms to use for un-
annotated physical properties. 

Our intent with this work is not to supplant the more pre-
cise, quantitative analyses that numerical simulations of bi-
osimulation models provide, but rather develop an additional 
tool that researchers can use to quickly check model assump-
tions and explore how qualitative perturbations propagate 
through networks.  The perturbation experiment shown in Fig-
ure 3 demonstrates that we can quickly generate systems-level 
information that could potentially help researchers identify 
drug targets without the costs associated with iterative numeri-
cal simulation. While a concern for the use of rich ontological 
representations and inference can be the computation cost of 
general-purpose reasoning engines, our experience shows that 



for models similar in size to that of Figure 3, generating the 
model’s math dependency map using HermiT only required 
several seconds.  

For this study we have combined semantics-based model-
ing formats, description logics, rules and automated reasoning 
to represent qualitative causal networks in biosimulation mod-
els. We have demonstrated how we can analyze these networks 
to gain systems-level perspectives on a model’s response to 
qualitative perturbations. Given that the OPB represents physi-
cal dependencies and properties across physical scales and do-
mains, our approach extends beyond chemical network model-
ing; theoretically, it can be applied to models from the molecu-
lar to the whole-body level. Additionally, our approach can be 
applied to any of the several hundred models available through 
public repositories that are convertible into the SemSim format.  

ACKNOWLEDGMENTS 
We thank Christopher Thompson and Karam Kim for 

helping create the network diagram in Figure 3 as well as 
Robert Hoehendorf for helping us select an automated reasoner 
for our approach. 

REFERENCES 
[1] D. L. Cook, M. L. Neal, F. L. Bookstein, and J. H. Gennari, “Ontology 

of physics for biology: representing physical dependencies as a basis for 
biological processes.,” J. Biomed. Semantics, vol. 4, no. 1, p. 41, 2013. 

[2] D. L. Cook, F. L. Bookstein, and J. H. Gennari, “Physical Properties of 
Biological Entities: An Introduction to the Ontology of Physics for 
Biology,” PLoS One, vol. 6, no. (12), p. e28708, 2011. 

[3] J. H. Gennari, M. L. Neal, M. Galdzicki, and D. L. Cook, “Multiple 
ontologies in action: Composite annotations for biosimulation models,” 
J. Biomed. Inform., vol. 44, no. 1, pp. 146–154, 2011. 

[4] D. A. Beard, et al., “Multi-scale modeling and data integration in the 
Virtual Physiological Rat Project,” Ann. Biomed. Eng., vol. 40, no. 11, 
pp. 2365–2378, 2012. 

[5] N. Le Novere, et al., “BioModels Database: a free, centralized database 
of curated, published, quantitative kinetic models of biochemical and 
cellular systems,” Nucleic Acids Res., vol. 34, no. suppl 1, pp. D689–
D691, 2006. 

[6] T. Yu, et al., “The physiome model repository 2,” Bioinformatics, vol. 
27, no. 5, pp. 743–744, 2011. 

[7] M. Hucka, et al., “The systems biology markup language (SBML): a 
medium for representation and exchange of biochemical network 
models,” Bioinformatics, vol. 19, no. 4, pp. 524–531, 2003. 

[8] A. A. Cuellar, et al., , “An overview of CellML 1.1, a biological model 
description language,” Simulation, vol. 79, no. 12, pp. 740–747, 2003. 

[9] M. L. Neal, et al., “Semantics-based composition of integrated 
cardiomyocyte models motivated by real-world use cases,” PLoS One, 
vol. 10, no. 12, p. e0145621, Dec. 2016. 

[10] E. Butterworth, B. E. Jardine, G. M. Raymond, M. L. Neal, and J. B. 
Bassingthwaighte, “JSim, an open-source modeling system for data 
analysis.,” F1000Research, vol. 2, p. 288, 2013. 

[11] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang, “HermiT: 
An OWL 2 Reasoner,” J. Autom. Reason., vol. 53, no. 3, pp. 245–269, 
2014. 

[12] D. L. Cook, J. H. Gennari, and J. C. Wiley, “Chalkboard: Ontology-
Based Pathway Modeling And Qualitative Inference Of Disease 
Mechanisms,” Pac Symp Biocomput, vol. 12, pp. 16–27, 2007. 

[13] V. Raia, et al., “Dynamic mathematical modeling of IL13-induced 
signaling in Hodgkin and primary mediastinal B-cell lymphoma allows 
prediction of therapeutic targets,” Cancer Res., vol. 71, no. 3, pp. 693–
704, 2011. 

 
Fig. 3. BioModel #313 reaction network. Overlaid are the results of a qualitative perturbation experiment where species STAT5 is decreased. Qualitative 
shifts for species and reactions are indicated in rectangles below nodes. Yellow rectangles indicate an ambiguous shift. Rectangles are absent for nodes 
unaffected by the perturbation. 


