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Abstract. Every moment of our daily life belongs to the new era of
“Big Data”. We continuously produce, at an unpredictable rate, a huge
amount of heterogeneous and distributed data. The classical techniques
developed for knowledge discovery seem to be unsuitable for extracting
information hidden in these volumes of data. Therefore, there is the
need to design new computational techniques. In this paper we focus
on a set of algorithms inspired by algebraic topology that are known
as Topological Data Analysis (TDA). We briefly introduce the principal
techniques for building topological spaces from data and how these can
be studied by persistent homology. Several case studies, collected within
the TOPDRIM (Topology driven methods for complex systems) FP7-
FET project, are used to illustrate the applicability of these techniques
on different data sources and domains.

Keywords: Topological Data Analysis, Data Mining, Simplicial Com-
plexes, Persistent Homology, Persistent Entropy

1 Introduction

Topology is the branch of mathematics that studies shapes and maps among
them. A topological space is a powerful mathematical concept for describing the
connectivity of a space. Informally, a topological space is a set of points each of
which equipped with a notion of neighbouring. One way to represent a topolog-
ical space is by connecting simple pieces such that their common intersections
are lower-dimensional pieces of the same kind and are known as simplices. Fig-
ure 1 shows the geometrical realisation of simplices: points for 0-simplices, line
segments for 1-simplices, filled triangles for 2-simplices and filled tetrahedra for
3-simplices. They can be extended naturally to n-dimensional objects realising
(n− 1)-simplices [5].

Recently, a new set of algorithms, identified as Topological Data Analysis
(TDA), has been derived from algebraic topology. These algorithms are designed
for investigating high-dimensional data in a quantitative manner. For example,
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Fig. 1. Top: From left to right, simplices of dimensions 0 (points), 1 (edges), 2 (trian-
gles) and 3 (tetrahedra). Bottom-left: a valid simplicial complex, Bottom-right: a not
valid simplicial complex [5].

they have been used for studying the characteristics of functional brain networks
at the mesoscopic level [14] as well as for deciphering viral evolution in biolog-
ical complex systems [3]. Other examples are related to the analysis of sensor
networks [4] and immunology [15, 10].

In the context of data mining, TDA can be seen as a new set of tools for per-
forming exploratory data analysis. It permits to study high dimensional datasets
without dimensionality reductions. It reveals local relationships hidden in the
data by transforming them into global objects, which are simplicial complexes.

TDA can be divided in two families: topological data compression and topo-
logical data completion [11]. Algorithms for topological data compression aim
at representing a collection of higher dimensional data points through a graph.
The main algorithm in this area is Mapper [20]. Conversely, topological data
completion, based on persistent homology [5], completes data to more complex
structures, i.e. simplicial complexes, which can be analysed in a more easy way.

In this paper, after a brief introduction of the basic mathematical machinery
(Section 2, we focus on the following techniques, based on persistent homology
and working on different data sources: Vietoris-Rips [2], Clique Weight Rank
Persistent Homology [5, 14] and Piecewise Complex [17]. Vietoris-Rips can be
used for pinpointing out the topology of a continuous object by starting from a
discrete sampling represented by a point cloud data (Section 3. Examples of con-
tinuous objects that can be studied are: the trajectory of an object in a physical
space or in a phase space, a geometrical object, and so on. Clique Weight Rank
Persistent Homology can be used when the data source is a weighted undirected
graph (Section4. Graphs are a powerful tool for representing 2-bodies relation-
ships (a classical example is the world wide web, where a link connects two
clients or a client with a server) but this representation does not capture higher
dimensional relationships. For this reason, we will use Clique Complexes, which
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are the right topological tool for extracting higher dimensional patterns from
a graph. For example, in the case of a sensor network, a higher dimensional
pattern can represent a subset of sensors not directly connected but that are
interacting simultaneously, thus determining a loss of performance of the whole
system through these interactions. Piecewise Complexes can be used to derive
a topological space from discrete signals (Section 5). Their most relevant ap-
plication is the topological comparison of real length noisy signals. Moreover,
in order to study dynamical systems from the data perspective using the three
techniques above, there is the need to equip them with statistics. In our works
we introduced persistent entropy [10]. It is used in Section 4 and Section 5.

We report on a set of applications of topological data analyses performed
within the TOPDRIM (TOPology DRIven Methods for complex systems) FP7-
FET project. We hope that these applications, belonging to different domains
and coping with different problems, can be used by the reader as signposts in
his or her personal experience in using topological data analysis.

2 Persistent Homology based algorithms

In the context of topology, homology is an algebraic machinery used for describ-
ing a topological space C by associating to it a sequence of homology groups.
Informally, for any k ∈ N, the k−th Betti number, denoted by βk, represents the
rank of the k−dimensional associated homology group and counts the number
of k−dimensional holes characterizing C. For instance, β0 is the number of con-
nected components, β1 counts the number of holes in 2D or tunnels in 3D1, β2
can be thought as the number of voids in geometric solids, and so on.

Persistent homology is a method for computing k−dimensional holes at dif-
ferent spatial resolutions. More persistent holes are detected over a wide range
of length and are more likely to represent true features of the underlying space,
rather than artifacts of sampling, noise, or particular choice of parameters. Per-
sistent homology appears as a fundamental tool in Topological Data Analysis.
It studies the evolution of k−dimensional holes along a sequence of simplicial
complexes (i.e. a filtration). The set of intervals representing birth and death
times of k−dimensional holes along such sequence is called the persistence bar-
code. k−dimensional holes with short lifetimes are informally considered to be
“topological noise”, and those with a long lifetime are considered to be topo-
logical feature associated to the given data (i.e. the filtration). The key idea of
Persistent Homology is as follows: First, the space must be represented as a sim-
plicial complex. Second, a filtration of the simplicial complex, that is a nested
sequence of increasing subsets (referred above as different spatial resolutions), is
computed. More concretely, a filtration of a simplicial complex K is a collection
of simplicial complexes {K(t)|t ∈ R} of K such that K(t) ⊂ K(s) for t < s and
there exists tmax ∈ R such that Ktmax

= K. The filtration time (or filter value)
of a simplex σ ∈ K is the smallest t such that σ ∈ K(t). Persistent homology

1 nD refers to the n−dimensional space Rn.
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describes how the homology of a given simplicial complex K changes along filtra-
tion. If the same topological feature (i.e., k−dimensional hole) is detected along
a large number of subsets in the filtration, then it is likely to represent a true
feature of the underlying space, rather than artifacts of sampling, noise, or par-
ticular choice of parameters. More concretely, a k−dimensional Betti interval,
with endpoints [tstart, tend), corresponds to a k−dimensional hole that appears
at filtration time tstart and remains until filtration time tend. The set of intervals
representing birth and death times of homology classes is called the persistence
barcode associated to the corresponding filtration. For more details and a more
formal description we refer to [5]. There are currently several software prod-
ucts for the computation of persistent homology:the plex family, PHAT, jHoles,
Perseus, DIPHA, GUDHY, and Dionysus. For a complete review we refer to [13].

3 Analyzing high dimensional point cloud data sets

Higher dimensional dataset are usually studied with techniques of dimension-
ality reduction. However sometimes this constrain gives rise to drop out useful
information. Conversely, topology can be used for visualizing and exploring high
dimensional and complex real-world point cloud data sets in which each data
point belongs to Rn. Vietoris-Rips filtration is a versatile tool in topological
data analysis and it is used for studying point cloud data. More formally, it is
a sequence of simplicial complexes built on a metric space to add topological
structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space.
Two classical examples of abstract simplicial complexes are Čech complexes and
Vietoris-Rips complexes (see [5, Chapter III]). Let V be a finite set of points
in Rn. The Čech complex of V and r denoted by Čr(V ) is the abstract simpli-
cial complex whose simplices are formed as follows. For each subset S of points
in V , form a closed ball of radius r/2 around each point in S, and include S
as a simplex of Čr(V ) if there is a common point contained in all of the balls
in S. This structure satisfies the definition of abstract simplicial complex. The
Vietoris-Rips complex denoted as V Rr(V ) is essentially the same as the Čech
complex. Instead of checking if there is a common point contained in the in-
tersection of the (r/2)−ball around v for all v in S, we may just check pairs
adding S as a simplex of Čr(V ) if all the balls have pairwise intersections. We
have Čr(V ) ⊆ V Rr(V ) ⊆ Č√2r(V ). See Fig.2. In our opinion, the homology
captured by Vietoris-Rips can be interpreted as geometrical signatures, that to-
gether with other features, can be used for training machine learning methods
for shape identification and retrieval.

Application 3.1 - Topological Classification of small DC Motors.

Persistent homology can be used for dealing with the comparison of high fre-
quency noisy signals. A new methodology based on signal embedding and applied
topology has been proposed in [16]. Signal embedding is a useful tool but in same

Alessandro
Immagine posizionata



Survey of TOPDRIM applications of Topological Data Analysis 5

Fig. 2. How to obtain Vietoris-Rips complexes from a point cloud data: starting from a
PCD in a metric space, we surround each point with a sphere that grow up simultane-
ously and equally. The ε parameter coincides with the radii of the spheres. Each ε gives
rise to new intersections. A new intersection of dimension k is equal to a k-1 simplices.
For each ε persistent homology is computed and in this case graphically represented
by the barcode.

case it is a not enough for studying long range noisy signals. Conversely, we argue
that an embedded signal in Rm space can be properly analyzed with topological
based techniques. We obtained numerical evidences that our procedure applied
to vibrational data acquired from the bench properly classifies small DC motors
into two classes: good and faulty. In order to classify the DC motors we defined
a new methodology. The first step to be accomplished is to represent the signal
into the Rn space. The selection of the right parameters (time-delay and min-
imum embedding dimension) for performing the embedding of the signal is a
crucial point. We suggest to use mutual information for deciding the time-delay
value and Cao’s method for selecting the embedding dimension. The embedding
step maps the signal points into a point cloud data (PCD). PCDs are used for
completing the data with simplicial complexes by constructing the Vietoris-Rips
complexes (or generally flag complexes). Betti numbers are computed by persis-
tent homology and they are used for analyzing the features of this topological
space:

Step 1 computing mutual information of the signal for finding the proper time-delay
Step 2 computing Cao’s method for deciding the minimum embedding dimension,

and to distinguish deterministic data from random data
Step 3 executing the embedding in the new Rn space
Step 4 transforming point cloud data in simplicial complexes using Vietoris-Rips
Step 5 computing persistent homology and representing Betti numbers via persis-

tent bar-codes
Step 6 statistically analyze the collection of Betti numbers.
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We applied our methodology to 76 small DC motors. The computation of auto
mutual information found two values for the time-delay parameter, respectively
5 and 7. Cao’s method identified as minimum dimension parameter the value
m = 3 for all DC motors. From each embedded signal we constructed the wit-
ness complexes with a max-min criterion for the selection of PCD. The simplicial
complexes are analyzed with persistent homology and the Betti numbers are pre-
sented with the persistent barcodes. We classified the DC motors into two classes
according to the Betti numbers sequences. We labeled the classes with good and
faulty, and then we compared our results with the classifications performed by an
expert operator. From this comparison we can argue that the signals with Betti
numbers β0 = 1, β1 = 1 are good, while the motors with β0 = 1, βi,i≥1 = 0 are
faulty motors. In good motors there are not evidence of periodical behaviors and
they are topological equivalent to a closed loop. Conversely, faulty motors are
characterized by periodical vibrations in the embedded signal, this behavior is
topologically equivalent to a filled geometrical object with topological invariant
β0 = 1.

Application 3.2 - Topological clustering of RNA Secondary Structure
Space

Homology is the natural tool for dealing with circular shapes recognition and
comparison. This task can be used for satisfying the analysis of shapes with bi-
ological meaning, e.g. for studying DNA or RNA sub-motifs. We have employed
persistent homology to classify RNA suboptimal secondary structures [6]. Since
the lowest free energy common structure is not always the correct structure,
topological analysis help to suggest alternative set of conformations that are
structurally similar to the lowest free energy structure. Here, RNA suboptimal
structures are considered as a point cloud data coming from a sequence; then
RNA distance is used to compute the similarity between each point. Since we ob-
tained a distance function on the set of point clouds; Rips filtration is performed
over them. We compared different metric spaces and at the end we selected the
tree edit distance over which we computed the Vietoris-Rips. Vietoris-Rips are
used for probing the topological space associated to the suboptimal structures.
In this ongoing study, all the filtrations are performed by using JavaPlex. This
analysis revealed that there is a structure conservation among RNA secondary
structures of the same family. Our preliminary result shows that persistent ho-
mology is captures important information from secondary structure space of
species of different family; it clusters the species minimum free energy structure
into different families. The persistent homology analysis shows that structural
dissimilarity can be observed even for species that are classified under the same
genus. Moreover, we introduce a shape language for representing RNA secondary
structures in a non-standard, non-linear way [7]. The main motivation is to pro-
pose a new interpretation of RNA folding as a self-adaptability process, within
the S[B] paradigm, towards a minimum free energy configuration. An RNA sec-
ondary structure is decomposed first by distinguishing between pseudoknot free
and pseudonotted sub-structures. For pseudoknot free sub-structures a proper
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formal language is defined. To address the representation of pseudoknotted sub-
structures the crucial aspects of RNA irreducible shapes and their associated
automatic groups are introduced.

4 Discovering higher dimensional relationships in
weighted networks: Clique Weight Rank Persistent
Homology

Simplicial complexes can be built also from graphs. Given an undirected graph,
a Clique Complex is based on the individuation of cliques, subsets of the vertex
set where each element is connected with all the others. Once that all the cliques
are found, and they will become the faces of the complex [14].

Definition 1 (Clique complexes). Given a graph G = (V,E), where V is the
set of vertex and E is the set of edges E ⊆ V × V , a clique complex of G is
the simplicial complex X(G) on V whose simplices are all cliques σ ⊂ V . For
example see Figure 3

The technique that completes a graph to a simplicial complex and studies its
homology is known as Clique Weight Rank Persistent Homology (CWRPH), see
Fig.3. CWRPH is implemented by jHoles algorithm [1]. The reason to move from
a graph to a simplicial complex is that the former is a suitable representation
for a collection of two bodies problem, but in case of complex systems (systems
of dynamical simultaneously interacting systems) this representation does not
handle with higher dimensional structures. A simplicial complex is the natural
algebraic representation of a such structures. For example a 2-dim simplicial
complex (that is a filled triangle) might be used for representing three compo-
nents that are interacting simultaneously. It exists if and only if the interaction is
not decomposed into a collection of smallest pieces, for example three edges that
otherwise would represent three 2-bodies problems. In our opinion, CWRPH can
be connected with machine learning techniques, e.g. support vector machine, by
defining new kernels based on simplices. This will play a fundamental role in
the identification of the most relevant higher dimensional communities within a
complex systems. CWRPH has been successfully used for analyzing biological
networks. Here we report on four experiments.

Application 4.1 - Topological classification of brain activities.

The first experiment regards the brain and was conducted by Petri et at. [14]. In
this experiment the authors converted functional magnetic resonance signals into
complex networks that are completed and studied by CWRPH. In the paper the
authors study the characteristics of functional brain networks at the mesoscopic
level from a novel perspective that highlights the role of inhomogeneities in the
fabric of functional connections. This can be done by focusing on the features
of a set of topological objectshomological cyclesassociated with the weighted
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Fig. 3. How CWRPH works: a) Starting from a weighted undirected graph Bron-
Kerbosch algorithm is used for listing all the maximal cliques. The weight distribution is
categorized and each clique is weighted with the corresponding minimum or maximum
category. b) A k-clique is equivalent to a k-1 simplices. The simplicial complex is
build incrementally nesting the filtered clique complexes and persistent homology is
computed.

functional network. We leverage the detected topological information to define
the homological scaffolds, a new set of objects designed to represent compactly
the homological features of the correlation network and simultaneously make
their homological properties amenable to networks theoretical methods. As a
proof of principle, we apply these tools to compare resting- state functional
brain activity in 15 healthy volunteers after intravenous infusion of placebo and
psilocybinthe main psychoactive component of magic mush- rooms. The results
show that the homological structure of the brains functional patterns undergoes
a dramatic change post-psilocybin, characterised by the appearance of many
transient structures of low stability and of a small number of persistent ones
that are not observed in the case of placebo.

Application 4.2 - Topological description of skin cancer.

The second paper by Binchi et al., reported on the application of jHoles for
studying the evolution of skin cancer [1]. The authors shown how the connec-
tivity of epidermal cells changes in response to a tumor by analyzing an in
silico model. The biological network has been derived from the proliferative, dif-
ferentiated and stratum corneum compartments, and jHoles used for studying
variation of the connectivity. Briefly, models for tumor growth and skin turnover
are combined with pharmacokinetic (PK) and pharmacodynamic (PD) models
to assess the impact of two alternative dosing regimens on efficacy and safety.
We studied the evolution of the topology (or the local connectivity). Epidermal
cells sequentially pass three compartments, named proliferative (pc), differen-
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tiated (dc), and stratum corneum (sc) compartments. We obtained a network
representation of the compartments connecting the cells using both their ad-
missible evolution (i.e., proliferative are connected only with differentiated and
differentiated with stratum) and their concentration. The homological analysis
of the network for the healthy epidermis shows a higher number of holes that
means a more spread cells distribution (the Betti numbers sequence: β0 = 1 and
β1 = 28698), due to the presence of the three compartments. After the tumor
the topology of network changed and the new sequence of Betti number is β0
= 1 and β1 = 24698 with a reduced number of holes that means healthy cells
disappeared and the network is less connected. Moreover, the authors were able
to detect the diffusion direction of the tumor and observed that the intermediate
cells disappeared more quickly then the others [1].

Application 4.3 - Topological modeling of human immune system.

The third paper reports on the application of CWRPH to a network based model
of the mammal immune system, the so-called idiotypic network and simulated
with C-ImmSim. In the simulator each idiotype (both antigens and antibodies)
is represented with a bit-string, in our case of 12 bit length. In our configu-
ration a simulation has a lifespan of 2190 ticks, where a tick=8 hours, and a
repertoire of at most 1012 antibodies and antigen volume equal to V = 10µL.
An idiotype interacts with each other if and only if their Hamming distance is
11 ≤ d(Aj , Ak) ≤ 12. The pair-wise distances are stored in a matrix, the so-called
Affinity matrix : Ji,k. From the affinity matrix and the volumes of each antibod-
ies a new weighting function is derived the so-called coexistence function. For
each simulation we computed the coexistence function and we used the weighted
idiotypic network as input for the CWRPH. The persistent barcodes are used for
computing both the persistent entropy and for identifying the persistent holes
and their generators, namely the persistent antibodies that govern the evolution
of the idiotypic network during the virgin state, the activation and the immune
memory. Persistent entropy (see figure ??) is able to recognize the activation of
the immune system: the peaks in the charts point out the immune activation
that is following by a transient that represents the immune response. During
the immune response the antibodies play a dual role: they can simultaneously
elicit and suppress each other. After this transient there is a plateau that rep-
resents the persistent immune network activation corresponding to the immune
memory. Persistent entropy is directly computed from the result of persistent
homology : the Betti numbers. The analysis of the generators of the homological
classes allows to identify the real number of antibodies that have been used: 203
instead of 4096. The analysis of the persistent Betti numbers reveals that there
is a subset of antibodies arranged in a 1-dimensional hole that is present both in
the activation state and in the memory state. This 1-dimensional hole is formed
by the antibodies Ab1, Ab2, Ab7, Ab13. This hole is formed by the most active
antibodies. The removal of this 1-dimensional hole from the barcodes will flatten
the entropy, that means this cycle is formed by the most specialized antibodies
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for the antigen that has been injected. Both the approximated von Neumann
entropy and the persistent entropy can be thought as complexity measures for
graphs or for simplicial complexes. The reason is evident in their mathematical
definitions: von Neumann entropy depends on the total number of vertices and
the degree of linked vertices, while persistent entropy depends on the topological
noise and by the persistent topological features. From this paper another one
has been derived and it focuses on the definition of a new general methodology
for modeling complex systems. The methodology is based on TDA, Information
Theory and formal grammars [10].

Fig. 4. Example of immune network. The nodes represent the antibodies, a link exists
if and only if two antibodies are affine and are interacting. The node color represents
the antibodies classes.

Application 3.4 - Topological detection of epileptic seizure.

We conclude by summarizing the fourth paper that describes a methodology
based on TDA for capturing when a complex system, represented by a multi-
variate time series, changes its internal organization. The methodology segments
a multivariate time series, i.e. a EEG, and transforms each segment into a sim-
plicial complex. Simplicial complexes are studied by persistent homology and
persistent entropy. In order to verify the reliability of the methodology, the au-
thors have analyzed the EEG signals of PhysioNet database and they have found
numerical evidences that the methodology is able to detect the transition be-
tween the pre-ictal and ictal states. The EEG signals used in this study were
collected at the Children’s Hospital Boston, and they consists of EEG recordings
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from pediatric subjects with intractable seizures. Subjects were monitored for
up to several days following withdrawal of anti-seizure medication in order to
characterize their seizures and assess their candidacy for surgical intervention.
We applied the procedure described to both signals and we found the optimal
size of the segmentation is equal to 120secs, then we segmented the whole EEG
track in 30 windows. For each window we computed the partial correlation co-
efficients and we used as threshold θ = 0. The upper triangular part of each
matrices was parsed and saved as edge list, hence the edge list was used as input
for jHoles. jHoles provides the Betti barcodes both in graphical and textual for-
mats, and we used the latter for computing the weighted persistent entropy over
each homological dimension (H0, H1, H2, and H3). We plotted the WHj values
for each matrix (see Figure 5). The two signals have been previously classified

Fig. 5. Weighted Persistent Entropy for the homological group H0. Left: Weighted
persistent entropy for the sigI, the marked peak corresponds to an ictal state. Right:
Weighted persistent entropy for the sigII. In sigI a phase transition is well evident.

by the PhysioNet users. Respectively, sigI corresponds to an individual affected
by epilepsy, while sigII belongs to an healthy patient. This classification also is
identified by our methodology. The analysis of persistent entropy reveals that
in WH0 of sigI a phase transition occurs (see the upper picture in Figure 5).
The topological interpretation is that among the windows with id = 20, 21 and
22, the number of connected components tends to be one and the topological
noise is minimized (all the features are persistent). Before and after this period,
the number of connected component is higher and the barcodes are noisy. These
three windows correspond exactly to the transition from the pre-ictal state to
the ictal state. In both signals, Betti numbers for higher dimensions are present
(β1, β2, β3) but in these signals the corresponding barcodes do not change signif-
icantly [9]. These results will be exploit to characterize a more general framework
for monitoring epilepsy [8].
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5 Shaping signals with simplicial complexes

Piecewise linear function (PL) is a powerful mathematical tool largely used for
approximating signals. The task of measuring the similarity among piecewise
linear functions (PLs) is still an open issue and a solution is strongly required in
machine learning methods. The comparison between the area under the curves
(AUCs) of discrete digital signals is a weak measure: for each value of AUC a
family of infinite signals exists. A PL can be threated as a 1-dimensional filtered
simplicial complex (a chain graph) and then studied by persistent homology
and persistent entropy. We argue this approach can be a fruitful kernel for new
machine learning methods for dealing with the supervised classification of uni-
variate real noisy signals.

Application 5.1 - Topological classification of real lenght noisy signals

Rucco et al., present a novel methodology based on a topological entropy, the
so-called persistent entropy, for addressing the comparison among discrete piece-
wise linear functions [17]. The comparison is certified by the stability theorem
for persistent entropy. The theorem is used in the implementation of a new al-
gorithm. The algorithm transforms a discrete piecewise linear function into a
filtered simplicial complex that is analyzed with persistent homology and persis-
tent entropy. Briefly, the methodology threats each points within the input signal
as a 0-simplex filtered by their y value. Two subsequent points are connected
by one 1-simplex filtered by max{y1, y2}. The resulting simplicial complex is
studied by persistent homology and persistent entropy.The authors used this
approach for facing the supervised classification problem of real long length sig-
nals of DC electrical motors. The quality of classification is stated in terms of
the area under receiver operating characteristic curve (AUC=94.52%).

6 Conclusions and future work

Computational topology has played a synergistic role in bringing together re-
search work from computational geometry, algebraic topology, data analysis and
many other related scientific areas. Recently, the field has undergone particu-
lar growth in the area of TDA. The application of topological techniques to
traditional data analysis, which traditionally was mostly based on a statistical
setting, has opened up new opportunities. This short review is intended to sum-
marize the contribution of TDA in the study of different types of datasets. We
focused on persistent homology based techniques for dealing with point cloud
data, complex networks and signals. In details, we reported on Vietoris-Rips,
Clique Weight Rank Persistent Homology and Piecewise Complexes techniques
and the related applications. We hope that these applications might be used by
the reader as signpost in his or her personal experience in using topological data
analysis. We remark that here we reported only briefly an incomplete list of our
works. We plan to extend this work to include also Q-Analysis, Mapper and how
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TDA can be connected to formal grammars, to machine learning for modelling
complex systems and to a topological field theory of data. Preliminary results
have been introduced in [10, 18, 19, 12].
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