
A New Dataset for Source Code Comment Coherence
Anna Corazza

DIETI,
Univ. di Napoli Federico II

anna.corazza@unina.it

Valerio Maggio
Fondazione

Bruno Kessler
vmaggio@fbk.eu

Giuseppe Scanniello
Dept. of Mathematics, Information

Technology, and Economics
Univ. della Basilicata

giuseppe.scanniello@unibas.it

Abstract

English. Source code comments pro-
vide useful insights on a codebase and
on the intent behind design decisions and
goals. Often, the information provided
in the comment of a method and in its
corresponding implementation may be not
coherent with each other (i.e., the com-
ment does not properly describe the im-
plementation). Several could be the moti-
vations for this issue (e.g., comment and
source code do not evolve coherently).
In this paper, we present the results of
a manual assessment on the coherence
between comments and implementations
of 3, 636 methods, gathered from 4 Java
open-source software. The results of this
assessment has been collected in a dataset
that we made publicly available on the
web. We also sketch here the protocol to
create this dataset.

Italiano. I commenti al codice sor-
gente forniscono informazioni utili
sull’implementazione del codice e sulle
intenzioni relative alle decisioni e agli
scopi del progetto. Spesso, le informazioni
presenti nel commento di un metodo e
nella sua implementazione possono non
essere coerenti (nel senso che il com-
mento non dà una descrizione adeguata
dell’implementazione). Ci possono es-
sere diverse spiegazioni per questo (ad
esempio, commenti e codice sorgente non
sono stati modificati in modo coerente). In
questo articolo, presentiamo i risultati di
una valutazione manuale della coerenza
tra commenti e implementazione di 3, 636
metodi, raccolti da 4 applicazioni open

source in Java. I risultati di questa
valutazione sono stati raccolti in un
dataset che abbiamo pubblicato sul web.
Accenniamo anche al protocollo seguito
per la preparazione del dataset.

1 Introduction

Natural language is used in different ways in the
development process of a software system and
therefore techniques of natural language process-
ing (NLP) and information retrieval (IR) are more
and more frequently integrated into software de-
velopment and maintenance tools. Many auto-
mated or semi-automated techniques have been
proposed to aid developers in the comprehen-
sion and in the evolution of existing systems,
e.g., (Corazza et al., 2016; Scanniello et al., 2010).

Natural language information is provided in
source code comments and in the name of identi-
fiers. In the former case, standard natural language
is usually adopted, although quite technical. Com-
ments are written in English, even when develop-
ers have different mother-tongues. On the other
hand, identifiers are typically constructed by com-
posing multiple terms and abbreviations. There-
fore, more sophisticated techniques are necessary
to extract the lexical information contained in each
identifier (Corazza et al., 2012).

Most of these techniques assume that the same
words are used whenever referring to a partic-
ular concept (Lawrie et al., 2010). In many
cases, this represents an oversimplification: meth-
ods are often modified without updating the cor-
responding comments (Salviulo and Scanniello,
2014). In these cases, comments might convey in-
formation unrelated or inconsistent with the cor-
responding implementation. Nevertheless, com-
ments are extremely important because they are

expected to convey the main intent behind design
decisions, along with some implementation details
(e.g., types of parameters and of returned values).

Therefore, more sophisticated models are nec-
essary to determine if there is coherence between
the lexicon provided in comments and in its corre-
sponding source code. Hence, there exists coher-
ence between a lead comment of a method and its
source code (also simply coherence, from here on)
if that comment describes the intent of the method
and its actual implementation.

In this work, we focus on the lead comment of
methods. This kind of comments precedes the def-
inition of a given method and is supposed to pro-
vide its documentation and details about the im-
plementation. We discuss here a dataset we made
publicly available on the web.1 It contains anno-
tations about the coherence of 3, 636 methods col-
lected from 4 implementations of 3 open source
projects written in Java. The defined protocol used
for its creation is also sketched, to give researchers
the opportunity to possibly extend it. Further de-
tails on this protocol can be found in (Corazza et
al., 2015).

For the assessment of the quality of the annota-
tion with special focus on computational linguis-
tics applications, a few indexes have been con-
sidered (Eugenio and Glass, 2004; Artstein and
Poesio, 2008; Mathet et al., 2015), among which
the kappa index (Cohen, 1960) is the most widely
adopted because of its favorable characteristics.
The inter-annotator agreement has therefore been
assessed by this parameter.

We expect that making freely available this
dataset could give impulse to the research for ap-
proaches to assess the coherence between the im-
plementation of a method and its lead comment
(simply coherence, from here on). In fact, al-
though no approach has been yet proposed in this
regard, they could be of great help for software
maintenance and evolution activities.

The paper is structured as follows. In Section 2,
we discuss the methodology used to create our
dataset. A description of the main characteristics
of the dataset is given in Section 3, while in Sec-
tion 4 the annotation is assessed. Some final con-
siderations conclude the paper.

1www2.unibas.it/gscanniello/coherence/

2 Dataset Construction

To create our dataset, we adopted the perspective-
based and the checklist-based review meth-
ods (Wohlin et al., 2012). The perspective is the
one of the Researcher aiming at assessing the co-
herence between the lead comment of a method
and its implementation. The process of creation is
based on the following elements:

1. Working Meetings. We used meetings to de-
termine the goals of our research work and
the process to create the dataset.

2. Dataset Creation. We instantiated the de-
fined process to create our dataset.

3. Outcomes. We gathered results during and
after the creation of our dataset.

4. Publishing Results and Dataset. We
shared our experience with the community
in (Corazza et al., 2015) and released the
dataset on the web.

The construction of the dataset has been com-
pleted in two main consecutive phases by using an
ad-hoc web system implemented for the purpose:

• Verify coherence. Annotators verify by
means of a checklist the coherence between
the lead comments of a set of methods and
their corresponding implementation.

• Resolve conflicts. The intervention of ex-
perts is required whenever the judgements of
the annotators differ. In our case, two of the
authors, with a background in software engi-
neering, assumed the role of experts and ex-
amined the problematic cases. For each con-
flicting method, the experts should reach an
agreement about the coherence or the non-
coherence. Methods on which experts do not
get a consensus are automatically discarded.

3 Dataset Description

Some descriptive statistics (e.g., number of classes
and methods) of the software systems in our
dataset are shown in Table 1.

• CoffeeMaker2 is a software to manage in-
ventory and recipes and to purchase bever-
ages. We chose this software because it has

2agile.csc.ncsu.edu/SEMaterials/
tutorials/coffee_maker/

Table 1: Descriptive statistics of the software sys-
tems in the dataset: Nf stands for the number of
files, Nc for the number of classes, Nm for the
number of methods and N∗

m for the number of
methods with lead comments.

System Version Nf Nc Nm N∗
m

CoffeeMaker - 7 7 51 47 (92%)
JFreeChart 6.0 0.6.0 82 83 617 485 (79%)
JFreeChart 7.1 0.7.1 124 127 807 624 (77%)
JHotDraw 7.4.1 575 692 6414 2480 (39%)

a simple and clear design (being it developed
for educational purposes).

• JFreechart3 is a Java tool supporting the vi-
sualization of data charts (e.g., scatter plots
and histograms). We included two versions
of this software. As reported in Table 1,
both these versions contain almost the 80%
of methods with lead comments. This sug-
gests an extensive use of comments, which is
the main reason why we decided to include
this software in the dataset.

• JHotDraw4 is a framework for technical and
structured graphics. Even if the source code
of JHotDraw is scarcely commented (see Ta-
ble 1), it is well-known in the software main-
tenance community due to its good Object-
Oriented design (Scanniello et al., 2010).

In Figure 1, we report the imple-
mentation and the lead comment of
setTickLabelsVisible (extracted from
JFreeChart ver. 0.7.1, included in our dataset).
According to our definition of coherence, we
can assert that this method is coherent. On the
other hand, the save method reported in Figure 2
provides a very poor and inadequate descrip-
tion of the design intent of the method, thus
reflecting a lack of coherence with the underlying
implementation.

Three annotators were involved in the dataset
creation process. Two of them hold a Bachelor
degree in Computer Science, and have very sim-
ilar technical backgrounds. On the other hand,
the third annotator can be considered more expe-
rienced than the other two since he holds a Master
degree in Computer Science. We distributed the
effort among the annotators so that each software

3www.jfree.org/jfreechart/
4www.jhotdraw.org/

/**
* Sets the flag that determines whether or not

* the tick labels are visible.

* Registered listeners are notified of a

* general change to the axis.

*
* @param flag The flag to set.

*/
public void setTickLabelsVisible(boolean flag) {

if (flag!=tickLabelsVisible) {
tickLabelsVisible = flag;
notifyListeners(new AxisChangeEvent(this));}

}

Figure 1: The lead comment and the implementa-
tion of the method setTickLabelsVisible
of JFreeChart 0.7.1

// GEN-FIRST:event_save
// Code for dispatching events from components
// to event handlers.
private void save(java.awt.event.ActionEvent evt) {
try {
String methodName = getParameter("datawrite");
if (methodName.indexOf(’(’) > 0) {

methodName = methodName.substring(0,
methodName.indexOf(’(’) - 1); }

JSObject win = JSObject.getWindow(this);
Object result = win.call(methodName, new

Object[]{getData()});
} catch (Throwable t) {
TextFigure tf = new TextFigure("Fehler: " + t);
AffineTransform tx = new AffineTransform();
tx.translate(10, 20);
tf.transform(tx);
getDrawing().add(tf); }

}

Figure 2: Non-Coherent method in
JHotDraw 7.4.1

would be separately evaluated by at least two an-
notators. This allowed us to have multiple judge-
ments for each method in the dataset, and to cal-
culate the rate of agreement among annotators.

4 Annotation Assessment

The whole dataset creation process occurred from
January, 15th 2014 to June, 20th 2014, for a to-
tal of 800 man-hours. This gives an estimation of
the effort required to conduct the study presented
in this paper, and provides an indication to the re-
searcher interested in extending our dataset.

The annotators provided indications on the
coherence of methods by assigning them one
out of three following possible values: Non-
Coherent, Don’t Know, and Coherent.

In this scenario, we use the kappa index (Cohen,
1960) to obtain an assessment of the agreement
among annotators, thus estimating the reliability
of their evaluations. In fact, if annotators agree
on a large number of methods, we can conclude

that their annotations are reliable. The kappa index
is designed for categorical judgments and refers
the agreement rate calculation to the rate of chance
agreement:

kappa =
po − pc
1− pc

, (1)

po is the observed probability of agreement, while
pc is the chance probability of agreement. Both
probabilities are estimated by the corresponding
frequencies. By a simple algebraic manipulation,
Equation 1 can be written as:

kappa = 1− qo
qc
, (2)

where qo = 1 − po and qc = 1 − pc and corre-
spond to the observed and the chance probabili-
ties of disagreement, respectively. Usually the in-
dex assumes values in]0, 1]5, as it can be expected
that the observed disagreement is less likely than
chance. A null value signals that observed dis-
agreement is exactly as likely as chance, while the
kappa index assumes negative values in the un-
wanted case where disagreement is more likely
than chance. Perfect agreement corresponds to
k = 1. Values greater than 0.80 are usually
considered as a cue of good agreement. Values
in the interval [0.67, 0.80] are considered accept-
able (Cohen, 1960).

The classical formulation of the kappa index
considers a binary classification problem (e.g.,
Non-Coherent or Coherent). However in our case,
the neutral judgement (i.e., Don’t know) is also
allowed. Therefore, possible disagreements in-
clude the case where one of the two answers is
the neutral one. In this case, it is possible to dif-
ferently weigh the possible disagreements among
annotators. In fact, disagreements due to the neu-
tral answers are less serious than disagreements
where judgments are totally divergent (i.e., Co-
herent and Non-Coherent, in our case). To this
end, Cohen (Cohen, 1968) presents a variant of the
kappa index, where in case of a disagreement, dif-
ferent weights can be applied. In case the same
weight is assigned to all possible disagreement
combinations, the original (unweighted) formula-
tion is obtained. The formulation of the Weighted
Kappa (WK) is the one in the equation (2), but for
the computation of qo and qc the contributions are

5The notation means that 1 is included in the interval,
while 0 is not.

Table 2: Agreement Rate of Judges as computed
by the Cohen’s Kappa Index.

System UK WK
CoffeeMaker 0.913 0.913
JFreeChart 6.0 0.939 0.918
JFreeChart 7.1 0.983 0.977
JHotDraw 0.824 0.684

weighted according to the importance given to the
corresponding disagreement cases. By contrast,
we refer to the original formulation of the kappa
index as Unweighted Kappa (UK). We assign to
the Don’t know response a weight that is half the
weight assigned to the Not-Coherent (or Coher-
ent) one. This is the same schema reported by
Cohen (Cohen, 1968). Weighted and Unweighted
kappa indexes are reported in Table 2.

The agreement between annotators is good on
the first three systems, and acceptable for JHot-
Draw. However, on this system the difference be-
tween the values for UK and WK is large, thus
providing a more accurate indication on the agree-
ment of the evaluations on this software.

At the end of the first step of the dataset cre-
ation process, the number of methods on which
annotators did not agree was 302, corresponding
to the 8.3% of the total number of methods from
all the systems in the dataset. Most of these meth-
ods are those in JHotDraw, as suggested by the
kappa index values (see Table 2). These methods
were reviewed by two of the authors. An agree-
ment was reached on all of these methods, which
were then included in the dataset. The total num-
ber of methods in the dataset is reported in Table 3
(i.e., 2, 883).

5 Conclusions and future work

In this paper, we have presented the early steps
of our research on the coherence between the lead
comment of methods and their implementations.
In particular, we have provided a description of
the problem settings, along with the experimental
protocol defined to create our dataset. We made it
publicly available on the web. We also sketched
the results of quantitative analysis conducted on a
codebase of 3, 636 methods, gathered from 4 dif-
ferent open-source systems written in Java.

There could be many possible future directions
for our research. For example, it would be inter-
esting to conduct an empirical study to investigate

Table 3: Descriptive Statistics of the Dataset: C
stands for Coherent, NC for Non-Coherent.

System C NC Total Don’t Know
(Not included)

CoffeeMaker 27 20 47 0
JFreeChart 6.0 406 55 461 24
JFreeChart 7.1 520 68 588 36
JHotDraw 762 1025 1787 693
Total 1715 1168 2883

the effect of maintenance operations on the coher-
ence for multiple versions of the same system. As
a step forward in this future research direction, we
already included in the dataset two versions of the
JFreeChart system. Our results and those by Fluri
et al. (Fluri et al., 2007) represent a viable start-
ing point. Finally, we would like to exploit the
collected data as an evaluation set to assess the
performance of approaches able to discern method
coherence.

References

Ron Artstein and Massimo Poesio. 2008. Inter-coder
agreement for computational linguistics. Computa-
tional Linguistics, 34(4):555–596, December.

J. Cohen. 1960. A coefficient of agreement for nom-
inal scales. Educational and Psychological Mea-
surement, 20(1):37–46.

J. Cohen. 1968. Weighted kappa: Nominal scale
agreement provision for scaled disagreement or par-
tial credit. Psychological Bulletin.

A. Corazza, S. Di Martino, and V. Maggio. 2012. LIN-
SEN: An efficient approach to split identifiers and
expand abbreviations. In Proceedings of Interna-
tional Conference on Software Maintenance, pages
233–242. IEEE Computer Society.

A. Corazza, V. Maggio, and G. Scanniello. 2015. On
the coherence between comments and implementa-
tions in source code. In 41st Euromicro Confer-
ence on Software Engineering and Advanced Appli-
cations, EUROMICRO-SEAA 2015, Madeira, Portu-
gal, August 26-28, 2015, pages 76–83. IEEE Com-
puter Society.

A. Corazza, S. Di Martino, V. Maggio, and G. Scan-
niello. 2016. Weighing lexical information for
software clustering in the context of architecture re-
covery. Empirical Software Engineering, 21(1):72–
103.

Barbara Di Eugenio and Michael Glass. 2004. The
Kappa statistic: a second look. Computational Lin-
guistics, 30(1).

B. Fluri, M. Wursch, and H.C. Gall. 2007. Do code
and comments co-evolve? on the relation between
source code and comment changes. In Proceedings
of the Working Conference on Reverse Engineering,
pages 70–79. IEEE Computer Society.

D Lawrie, D Binkley, and C Morrell. 2010. Normal-
izing Source Code Vocabulary. In Proceedings of
Working Conference on Reverse Engineering, pages
3–12. IEEE Computer Society.

Yann Mathet, Antoine Widlöcher, and Jean-Philippe
Métivier. 2015. The unified and holistic method
gamma γ for inter-annotator agreement measure and
alignment. Computational Linguistics, 41(3):437–
479, September.

F. Salviulo and G. Scanniello. 2014. Dealing
with identifiers and comments in source code com-
prehension and maintenance: Results from an
ethnographically-informed study with students and
professionals. In Proceedings of International Con-
ference on Evaluation and Assessment in Software
Engineering, pages 423–432. ACM Press.

G. Scanniello, A. D’Amico, C. D’Amico, and
T. D’Amico. 2010. Using the kleinberg algorithm
and vector space model for software system clus-
tering. In Proceedings of International Conference
on Program Comprehension, pages 180–189. IEEE
Computer Society.

C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson,
B. Regnell, and A. Wesslén. 2012. Experimenta-
tion in Software Engineering. Computer Science.
Springer.

