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Abstract 

Elevation in typing latency for the initial 
letter of the second constituent of an Eng-
lish compound, relative to the latency for 
the final letter of the first constituent of 
the same compound, provides evidence 
that implementation of a motor plan for 
written compound production involves 
smaller constituents, in both semantically 
transparent and semantically opaque 
compounds. We investigate here the im-
plications of this evidence for algorithmic 
models of lexical organisation, to show 
that effects of differential perception of 
the internal structure of compounds and 
pseudo-compounds can also be simulated 
as peripheral stages of lexical access by a 
self-organising connectionist architec-
ture, even in the absence of morpho-
semantic information. This complemen-
tary evidence supports a maximization-
of-opportunity approach to lexical mod-
elling, accounting for the integration of 
effects of pre-lexical and lexical access. 

Il rallentamento nel tempo di battitura 
del primo carattere del secondo costi-
tuente di un composto inglese, rispetto al 
tempo dell’ultimo carattere del primo co-
stituente, dimostra che l’implementazione 
del programma motorio per la scrittura 
di un composto è influenzata dai costi-
tuenti del composto stesso, siano essi se-
manticamente trasparenti o opachi. Il 
presente contributo offre un modello 
computazionale di questa evidenza, e ne 
valuta l’impatto sull’organizzazione del 
lessico mentale: la percezione del confine 
di morfema tra i due costituenti è analiz-
zata come il risultato dell’interazione di-
namica tra processi di accesso pre- e 
post-lessicale. 

1 The evidence 

A key question concerning the representation and 
processing of compound words has focused on 
whether (and, if so, how) morphological struc-
ture plays a role. The bulk of the research on this 
issue has come from recognition or comprehen-
sion tasks such as lexical decision or reading.  
However, written production provides a useful 
counterpart and allows researchers to examine 
whether morphemes are used even after a word 
has been accessed.  One advantage of a typing 
task (in which the time to type each letter of a 
word is recorded) is that researchers can examine 
differences in processing difficulty at various 
points in the word.  Previous research found an 
elevation in typing latency for the initial letter of 
the second constituent relative to the latency for 
the final letter of the first constituent for English 
(Gagné & Spalding 2014; Libben et al. 2012; 
Libben & Weber 2014) and German compounds 
(Sahel et al. 2008; Will et al. 2006). This eleva-
tion in typing latency at the morpheme boundary 
suggests that the system plans the output mor-
pheme by morpheme, rather than as a whole unit, 
and that morphological programming is not 
complete when the motor system begins the out-
put of the word (Kandel et al. 2008). 

 Gagné and Spalding (2016) examined the role 
of morphemic structure and semantic transparen-
cy on typing latency. The stimuli consisted in 
200 compounds, 50 pseudo-compounds, and 250 
monomorphemic words matched pairwise with 
the compounds and pseudo-compounds in the 
number of syllables and letters. The pseudo-
compounds contain two words that do not func-
tion as morphemes (e.g., carpet contains car and 
pet). The compounds varied in whether the first 
and second constituent were semantically trans-
parent. The items were displayed individually 
using a progressive demasking procedure and 
participants typed the word as the computer rec-
orded the time required to type each letter. 



 The time to initiate the first letter was equiva-
lent for monomorphemic and compound words. 
Typing times got faster across the word for both 
word types, but the rate of change was faster for 
monomorphemic words than for compound 
words. This difference was not observed when 
comparing monomorphemic words and pseudo-
compounds.  

For compounds, the rate of speed-up was 
slower when the first constituent was transparent 
than when it was opaque, but was unaffected by 
the transparency of the second constituent. The 
elevation in typing latency at the morpheme 
boundary was larger when the first constituent 
was transparent than when it was opaque, but 
was unaffected by the transparency of the second 
constituent. This difference is due to the final 
letter of the first constituent when the first con-
stituent requiring less time to type when it was 
transparent than when it was opaque.  

The data for the pseudo-compounds indicated 
that embedded morphemes influence production, 
even when they do not function as morphemes. 
Typing latency increased one letter prior to the 
end of the first constituent of a pseudo-
compound and remained elevated through the 
boundary (e.g., both r and c in scarcity were ele-
vated relative to the a).  

1.1 Implications for lexical architectures 

The reported evidence clearly indicates that mor-
phemic structure is involved in written word 
production. The production of compounds differs 
from that of monomorphemic words and the se-
mantic transparency of the two constituents leads 
to different effects. Furthermore, embedded 
pseudo-morphemes appear to influence the pro-
duction of pseudo-compounds, but not in the 
same way that the embedded morphemes affect 
the production of compounds.  

This appears to lend only partial support to 
models of lexical architecture where both com-
pounds and their constituents are represented and 
processed as independent access units (Figure 1). 
In panel A, following Taft & Forster (1975), ac-
cess and output of compounds are mediated by 
their constituents (Cs), but extra procedures 
would be needed to account for the role of se-
mantic transparency in modulating the size of 
elevation in typing latency at the morpheme 
boundary. A supralexical account (panel B: Gi-
raudo & Grainger 2000, Grainger et al. 1991), 
where constituents are activated upon composi-
tional interpretation of compounds, cannot cap-
ture the persistence of typing effects in semanti-

cally opaque compounds (and, to an extent, in 
pseudo-compounds). Race models (panel C: 
Schreuder & Baayen 1995) posit parallel path-
ways for compound processing (both holistic and 
compositional), depending on variables such as 
whole word vs. constituent frequency, but it is 
not clear how they can account for effects of in-
teraction between the two paths. Connectionist 
models (panel D: Rumelhart & McClelland 
1986, Plaut & Gonnerman 2000), on the other 
hand, tend to dispense with specialized represen-
tational levels and access procedures, and make 
room for distributed effects of sublexical co-
activation through overlaying patterns of pro-
cessing units. A defining feature of these models 
is that they blur the traditional distinction be-
tween representations and processing units. We 
suggest that blurring this distinction can go a 
long way in addressing some of the issues that 
appear to elude models A, B and C.  

 
Figure 1 – Four architectures of form-meaning mapping 

in the mental lexicon: C1+C2 designates two-word com-
pounds and Cs mono-morphemic constituents (adapted from 

Diependaele et al. 2012) 
 
Temporal Self-Organising Maps (TSOMs: 

Ferro et al. 2011; Marzi et al. 2014; Pirrelli et al. 
2015), are a time-sensitive variant of Kohonen’s 
SOMs (Kohonen, 2002), where words are stored 
through routinized, time-bound patterns of re-
peatedly successful processing units. Since all 
input words are stored concurrently on the same 
layer of fully connected nodes, TSOMs account 
for effects of co-activation of competing repre-
sentations in terms of a continuous function of 
distributional regularities in the input data. In 
what follows, starting from Gagné & Spalding’s 
evidence, we will focus on peripheral stages of 
lexical access/output, to verify if mechanisms of 
parallel, distributed pattern activation can ac-
count for differential processing effects between 
compounds and pseudo-compounds even in the 



absence of morpho-semantic information. Alt-
hough computational testing is carried out on 
TSOMs only, our discussion and concluding re-
marks address issues that go beyond a specific 
computational framework.  

 

2 TSOMs 

A TSOM consists of a grid of memory nodes 
with two layers of connectivity. The first layer 
(or I-layer) fully connects each node to the input 
vector, where symbols are sampled at discrete 
time ticks as patterns of activation ranging in the 
[0, 1] interval. Weights on the I-layer are adjust-
ed in training for individual nodes to develop 
specialised sensitivity to particular input sym-
bols. Each node is also connected to all other 
nodes through a layer of re-entrant connections 
(or T-layer), whose weight strength determines 
the amount of influence that activation of one 
node has on other nodes at a one-tick delay.  

When an input symbol is presented at time t, 
the level of activation 𝑦! 𝑡  of node i is a func-
tion of: (a) the node’s sensitivity to the current 
input symbol (𝑦!_!"#$%,! 𝑡 ), and (b) the re-entrant 
support the node receives from the map activa-
tion state at t-1 (𝑦!_!"#$%,! 𝑡 = 𝑓 𝑦!(𝑡 − 1) , where f 
is a linear function and j ranges over all map 
nodes). More formally: 

𝑦! 𝑡 = 𝛼 ∙ 𝑦!_!"#$%,! 𝑡 + 1 − 𝛼 ∙ 𝑦!_!"#$%,! 𝑡   

The node responding most strongly to the input 
symbol S at time tick t is called Best Matching 
Unit (hereafter BMU(S, t) or BMU(t) for short).  

The map’s response to a sequence of input 
symbols like carpet is a chain of consecutively 
firing BMUs, each responding to a letter in car-
pet. During training, connection weights between 
consecutive BMUs are adjusted to the frequency 
distribution of input symbols in the training set, 
according to Hebbian principles of correlative 
learning. Given the bigram ab, the connection 
strength between BMU(a, t-1) and BMU(b, t) 
increases if a often precedes b (entrenchment) 
and decreases if b is often preceded by a symbol 
other than a (competition) (Figure 2, left). Com-
bination of entrenchment and competition yields 
selective specialisation of chains of BMUs (Fig-
ure 2, right). If the same input symbol follows 
different contexts, it will tend to be responded to 
by more BMUs, one for each context. The 
stronger the probabilistic support that the input 
symbol receives from its preceding context, the 
more likely the recruitment of a dedicated BMU, 

and the stronger its re-entrant connection. As a 
result of this dynamic, high-frequency words 
recruit specialised node chains, low-frequency 
words are responded to by weaker, “blended” 
node chains. 

 
Figure 2 - Left: operation of Hebbian rules on potentiated 
(‘+’) and inhibited (‘-‘) connections. Right: forward one-

tick-delay connections leaving ‘A’ at time t-1. Larger nodes 
represent BMUs. Shades of grey indicate levels of node 

activation. 

2.1 The Experiment 

The 200 compounds and 50 pseudo-compounds 
used by Gagné & Spalding were used to train a 
40x40 node TSOM for 100 learning epochs. Be-
sides compounds and pseudo-compounds, the 
training set included 500 (pseudo)constituents as 
individual words (e.g. car and wash in carwash, 
car and pet in carpet), for a total amount of 750 
items. At each training epoch, monomorphemic 
words were shown 10 times as often as com-
pounds. We ran 5 repetitions of the experiment, 
and results were analysed using linear mixed ef-
fects models (LME), with experiment repetitions 
and training items as random variables. 

To analyse differential processing effects for 
pseudo-compounds and compounds, we focused 
on two types of evidence: (i) per-letter perfor-
mance of a trained TSOMs in incrementally an-
ticipating compounds and pseudo-compounds; 
(ii) structural connectivity of BMUs responding 
to letter bigrams at the C1-C2 boundary.  

To anticipate a progressively presented input 
word, a TSOM propagates the activation of the 
current BMU(t) through its forward temporal 
connections, and outputs, at each time tick, the 
symbol 𝑆!"#(!!!) encoded on the I_layer of the 
most strongly (pre)activated node: 

𝐵𝑀𝑈(𝑡 + 1) = argmax
!!!,…,!

𝑚!,!                   ℎ = 𝐵𝑀𝑈 𝑡  

where 𝑚!,! is the weight value on the forward 
temporal connection from node h to node i. Each 
correctly predicted symbol in the input word is 
assigned the prediction score of the preceding 
symbol incremented by 1. Otherwise, the symbol 
receives a 0-point score.  



 

 
Figure 3 – Marginal plots of interaction effects between 
compounds vs. pseudo-compounds and letter distance to 

morpheme boundary in an LME model fitting anticipation 
of up-coming BMUs by a TSOM. Negative and positive x 
values indicate letter positions located, respectively, in the 
first and second constituent. Anticipation is plotted across 
whole (pseudo)compounds (top panel), and by individual 

constituents (bottom panel). 

Figure 3 (top panel) illustrates the rate of letter 
anticipation across the word for both compounds 
and pseudo-compounds, plotted by distance to 
the morpheme boundary. The steeper rate for 
pseudo-compounds than for compounds shows 
that pseudo-compounds are easier to pre-
dict/anticipate than compounds. We take this 
evidence to be in line with evidence of a faster 
speedup rate in the typing of monomorphemic 
vs. compound words. A closer look at anticipa-
tion rates for individual constituents (Figure 3 
bottom panel) shows a drop of anticipation at the 
C1-C2 boundary (more prominent for com-
pounds than pseudo-compounds) with a steeper 
increase in C1 and C2 for pseudo-compounds, 
which happen to be, on average, shorter than C1 
and C2 in real compounds. 

To look for structural correlates of anticipation 
rates in the map, we conducted, for each item, a 
letter-by-letter analysis of values of pointwise 
entropy (PWH) for the connections between con-
secutive BMUs, namely h=BMU(t-1) and 
i=BMU(t):  

𝑃𝑊𝐻 𝑚!,! = −𝑙𝑜𝑔
𝑚!,!

𝑚!,!!
                   

The value of PWH for the connection between 
end-C1 and start-C2 (x = 0) has a local peak in 
compounds only (Figure 4). Since PWH provides 
a measure of how unexpected the activation of 

BMU(t) is, this structural evidence can account 
for a delay in processing and a drop in anticipa-
tion at the morpheme boundary of compounds, 
but not of pseudo-compounds.   

 
Figure 4 – Marginal plots of interaction effects between 
compound vs. pseudo-compound constituents and letter 

distance to morpheme boundary in an LME model fitting 
pointwise entropy of forward BMU connections. Negative 
and positive x values indicate letter positions located, re-

spectively, in the first and second constituent. 

3 Discussion and conclusions 

Trained on both compounds and pseudo-
compounds, TSOMs develop a growing sensi-
tivity to surface distributional properties of input 
data, turning chains of randomly connected, gen-
eral-purpose nodes into specialised sub-chains of 
BMUs that respond to specific letter strings at 
specific positions. Compounds not only tend to 
occur, on average, less frequently than their 
C1/C2 constituents do as independent words (Ji 
et al. 2011), but they tend to present lower-
frequency bigrams at the C1-C2 boundary than 
do pseudo-compounds. Principles of Hebbian 
learning allow TSOMs to capitalise on both ef-
fects. Entrenchment makes expectations for high-
frequency bigrams stronger and expectations for 
low-frequency bigrams weaker. At the same 
time, the competition between C1 as an inde-
pendent word and C1 as the first constituent in a 
C1-C2 compound biases the map’s expectation 
towards the most frequent event (C1 in isola-
tion). Compound families, i.e. sets of compounds 
sharing C1 (windmill, windshield etc.) or C2 
(snowball, basketball etc.), magnify these ef-
fects, making the map more sensitive to formal 
discontinuity at morpheme boundaries. When 
more C2s can follow the same C1 in complemen-
tary distribution, the left-to-right expectation for 
a particular C2 to occur, given C1, decreases. 
Likewise, when more C1s competitively select 
the same C2, the individual contribution of each 
C1 to the prediction of C2 decreases. We conjec-
ture that more global effects of lexical organisa-
tion like these may eventually blur local memory 



effects based on position-independent bigram 
frequencies.   

Our simulations with TSOMs can model the 
correlation between continuously varying distri-
butional regularities in the input data and periph-
eral levels of routinized recognition and produc-
tion patterns. These patterns are in line with 
Gagné & Spalding’s evidence of (a) the influ-
ence of embedded pseudo-morphemes on cas-
caded models of written word production, and 
(b) faster anticipation rates for monomorphemic 
vs. compound words.  

Further experimental results (not reported 
here), obtained by including compound families 
in the training data, confirm slower anticipation 
rates for true compound constituents, due to the 
combined effect of word frequency distributions 
and word compositionality in compound fami-
lies. The size of a compound family can arguably 
be a function of the degree of productivity and 
semantic transparency of its members (Baroni et 
al. 2007). The influence of the compound family 
size on anticipation rates can shed light on the 
influence of levels of semantic transparency on 
compound processing. Simulation evidence sug-
gests that the bigger the family, the stronger its 
influence will be. Finally, we also monitored the 
influence of increasing token frequencies of 
monomorphemic words in the training data on 
the map perception of constituent boundaries 
within compounds. As expected, for constant 
frequency values of compounds in the training 
set, the higher the token frequency of monomor-
phemic words, the higher the pointwise entropy 
of connections at the C1-C2 boundary.   

A full account of Gagné & Spalding’s evi-
dence of a graded influence of semantic trans-
parency on compound processing is beyond the 
reach of the computational architecture presented 
here. Surface effects of discontinuity in the inter-
nal structure of compounds (as opposed to pseu-
do-compounds) appear to provide a purely for-
mal, pre-lexical scaffolding for truly morpho-
semantic effects to emerge at later processing 
stages. To model these effects, we appear to be 
in need of a parallel processing architecture able 
to effectively integrate several representational 
levels (orthographic, phonological, morphologi-
cal, and conceptual) and different processing 
steps within a single distributed system (Smolka 
et al. 2009). Nonetheless, our simulations show 
that by letting compounds, pseudo-compounds 
and (pseudo)constituents compete for the same 
level of memory resources on a topological map, 
it is possible to account for apparently contradic-

tory effects of a) graded perception of constituent 
boundary in both compounds and pseudo-
compounds, apparently requiring prelexical de-
composition, and b) higher anticipation rates for 
pseudo-compounds than compounds, supporting 
full form representations for lexical access.   
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