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Abstract

English. In the last decade, many accu-
rate dependency parsers have been made
publicly available. It can be difficult for
non-experts to select a good off-the-shelf
parser among those available. This is even
more true when working on languages dif-
ferent from English, because parsers have
been tested mainly on English treebanks.
Our analysis is focused on Italian and re-
lies on the Italian Stanford Dependency
Treebank (ISDT). This work is a contri-
bution to help non-experts understand how
difficult it is to apply a specific depen-
dency parser to a new language/treebank
and choose a parser that meets their needs.

Italiano. Nell’ultimo decennio sono stati
resi disponibili molti analizzatori sintattici
a dipendenza. Per i non esperti può es-
sere difficile sceglierne uno pronto all’uso
tra quelli disponibili. A maggior ragione
se si lavora su lingue diverse dall’inglese,
perché gli analizzatori sono stati appli-
cati soprattutto su treebank inglesi. La
nostra analisi è dedicata all’italiano e
si basa sull’Italian Stanford Dependency
Treebank (ISDT). Questo articolo è un
contributo per aiutare i non esperti a
capire quanto è difficile applicare un anal-
izzatore a una nuova lingua/treebank e a
scegliere quello più adatto.

1 Introduction

In the last decade, there has been an increasing in-
terest in dependency parsing, witnessed by the or-
ganisation of various shared tasks, e.g. Buchholz
and Marsi (2006), Nivre et al. (2007), Seddah et al.
(2013), Seddah et al. (2014). Concerning Italian,
there have been tasks on dependency parsing in

the first four editions of the EVALITA evaluation
campaign (Bosco et al., 2008; Bosco et al., 2009;
Bosco and Mazzei, 2011; Bosco et al., 2014). In
the 2014 edition, the task on dependency parsing
exploited the Italian Stanford Dependency Tree-
bank (ISDT), a treebank featuring an annotation
based on Stanford Dependencies (de Marneffe and
Manning, 2008).

This paper is a follow-up of Lavelli (2014b)
and reports the experience in applying an up-
dated list of state-of-the-art dependency parsers
on ISDT. It can be difficult for non-experts to
select a good off-the-shelf parser among those
available. This is even more true when working
on languages different from English, given that
parsers have been tested mainly on English tree-
banks (and in particular on the WSJ portion of
the PennTreebank). This work is a contribution to
help practitioners understand how difficult it is to
apply a specific dependency parser to a new lan-
guage/treebank and choose a parser to optimize
their desired speed/accuracy trade-off.

As in many other NLP fields, there are very few
comparative articles where different parsers are di-
rectly run by the authors and their performance
compared (Daelemans and Hoste, 2002; Hoste et
al., 2002; Daelemans et al., 2003). Most of the pa-
pers simply present the results of a newly proposed
approach and compare them with the results re-
ported in previous articles. In other cases, the pa-
pers are devoted to the application of the same tool
to different languages/treebanks. A notable excep-
tion is the study reported in Choi et al. (2015),
where the authors present a comparative analysis
of ten leading statistical dependency parsers on a
multi-genre corpus of English.

It is important to stress that the comparison pre-
sented in this paper concerns tools used more or
less out of the box and that the results cannot be
used to compare specific characteristics like: pars-
ing algorithms, learning systems, . . .



2 Parsers

The choice of the parsers used in this study
started from the ones already applied in a previous
study (Lavelli, 2014b), i.e. MaltParser, the MATE
dependency parsers, TurboParser, and ZPar. We
then identified a few other freely available de-
pendency parsers that have shown state-of-the-
art performance. Some of such parsers are in-
cluded in the study in Choi et al. (2015) and oth-
ers have been made publicly available more re-
cently. The additional parsers included in this pa-
per are DeSR, the Stanford Neural Network de-
pendency parser, EmoryNLP, RBG, YARA Parser,
and LSTM parser.

Differently from what was done in the previous
study, this time we have not included approaches
based on combination of parsers’ results, such as
ensemble or stacking. They usually obtain top per-
formance (see e.g. Attardi and Simi (2014) at
EVALITA 2014) but in this case we focus on sim-
plicity and ease of use rather than on absolute per-
formance. Below you may find short descriptions
of the parsers reported in the paper.

MaltParser (Nivre et al., 2006) (version 1.8)
implements the transition-based approach to de-
pendency parsing, which has two essential com-
ponents: (i) a nondeterministic transition system
for mapping sentences to dependency trees; (ii) a
classifier that predicts the next transition for ev-
ery possible system configuration. MaltParser in-
cludes different built-in transition systems, dif-
ferent classifiers and techniques for recovering
non-projective dependencies with strictly projec-
tive parsers.

The MATE tools1 include both a graph-based
parser (Bohnet, 2010) and a transition-based
parser (Bohnet and Nivre, 2012; Bohnet and
Kuhn, 2012). For the languages of the 2009
CoNLL Shared Task, the graph-based MATE
parser reached accuracy scores similar or above
the top performing systems with fast processing
(obtained with the use of Hash Kernels and par-
allel algorithms). The transition-based MATE
parser is a model that takes into account complete
structures as they become available to rescore the
elements of a beam, combining the advantages of
transition-based and graph-based approaches.

TurboParser (Martins et al., 2013)2 (version

1https://code.google.com/p/mate-tools/
2http://www.ark.cs.cmu.edu/

TurboParser/

2.3) is a C++ package that implements non-
projective graph-based dependency parsing ex-
ploiting third-order features. The approach uses
AD3, an accelerated dual decomposition algo-
rithm extended to handle specialized head au-
tomata and sequential head bigram models.

ZPar (Zhang and Nivre, 2011) (version 0.75)
is a transition-based parser implemented in C++.
ZPar supports multiple languages and multiple
grammar formalisms. ZPar has been most heavily
developed for Chinese and English, while it pro-
vides generic support for other languages. It lever-
ages a global discriminative training and beam-
search framework.

DeSR (Attardi and Dell’Orletta, 2009) version
1.4.3 is a shift-reduce dependency parser, which
uses a variant of the approach of Yamada and Mat-
sumoto (2003). It is capable of dealing directly
with non-projective parsing, by means of specific
non-projective transition rules (Attardi, 2006). It
is highly configurable: one can choose which clas-
sifier (e.g. SVM or Multi-Layer Perceptron) and
which feature templates to use, and the format of
the input, just by editing a configuration file.

EmoryNLP (Choi and McCallum, 2013)3 (pre-
viously ClearNLP) dependency parser (version
1.1.1) uses a transition-based, non-projective pars-
ing algorithm showing a linear-time speed for both
projective and non-projective parsing.

The Stanford neural network dependency
parser (Chen and Manning, 2014)4 is a transition-
based parser which produces typed dependency
parses using a neural network which uses word
embeddings as features besides forms and POS
tags. It also uses no beam.

RBG (Lei et al., 2014; Zhang et al., 2014b;
Zhang et al., 2014a)5 is based on a low-rank fac-
torization method that enables to map high dimen-
sional feature vectors into low dimensional repre-
sentations. The method maintains the parameters
as a low-rank tensor to obtain low dimensional
representations of words in their syntactic roles,
and to leverage modularity in the tensor for easy
training with online algorithms.

YARA Parser (Rasooli and Tetreault, 2015)6 is
an implementation of the arc-eager dependency
model. It uses an average structured perceptron

3http://nlp.mathcs.emory.edu/
4http://nlp.stanford.edu/software/

nndep.shtml
5https://github.com/taolei87/RBGParser
6https://github.com/yahoo/YaraParser



as classifier and a beam size of 64. The feature
setting is from Zhang and Nivre (2011) with ad-
ditional Brown cluster features.

LSTM parser (Dyer et al., 2015; Ballesteros et
al., 2015)7 is a transition based dependency parser
with state embeddings computed by LSTM RNNs
and an alternative char-based model exploiting
character embeddings as features. Both the mod-
els are applied in the experiments.

The list of parsers is still in progress because
the field of dependency parsing is in constant evo-
lution. In mid-May, SyntaxNet, the dependency
parser by Google, was made publicly available; a
few days later BIST parser (that claims to be “A
faster and more accurate parser than Google’s Mc-
Parseface”) was announced to become public.

SyntaxNet (Andor et al., 2016)8, BIST
parser (Kiperwasser and Goldberg, 2016)9, and
spaCy10 are not yet included in our study because
we are still trying to make them working in a sat-
isfactory way.

3 Data Set

The experiments reported in the paper are per-
formed on the Italian Stanford Dependency Tree-
bank (ISDT) (Bosco et al., 2013) version 2.0 re-
leased in the context of the EVALITA 2014 evalu-
ation campaign on Dependency Parsing for Infor-
mation Extraction (Bosco et al., 2014)11. There
are three main novelties with respect to the pre-
viously available Italian treebanks: (i) the size of
the dataset, much bigger than the resources used in
the previous EVALITA campaigns; (ii) the annota-
tion scheme, compliant to de facto standards at the
level of both representation format (CoNLL) and
adopted tagset (Stanford Dependency Scheme);
(iii) its being defined with a specific view to sup-
porting information extraction tasks, a feature in-
herited from the Stanford Dependency scheme.

The training set contains 7,414 sentences
(158,561 tokens), the development set 564 sen-
tences (12,014 tokens), and the test set 376 sen-
tences (9,066 tokens).

7https://github.com/clab/lstm-parser
8https://github.com/tensorflow/models/

tree/master/syntaxnet
9https://github.com/elikip/bist-parser

10https://spacy.io/, https://github.com/
spacy-io/spaCy

11http://www.evalita.it/2014/tasks/dep_
par4IE.

4 Experiments

The level of interaction with the authors of the
parsers varied. For MaltParser, MATE parsers,
TurboParser, and ZPar we have mainly exploited
the experience gained in the context of EVALITA
2014 (Lavelli, 2014a).

Concerning MaltParser, in addition to using
the best performing configuration at EVALITA
2014 (Nivre’s arc-eager, PP-head), we have used
MaltOptimizer12 (Ballesteros and Nivre, 2014) to
identify the best configuration. This was done to
be fair to the other parsers, given that MaltParser’s
best configuration was the result of extensive fea-
ture selection at the CoNLL 2006 shared task. Ac-
cording to MaltOptimizer, the best configuration
is Nivre’s arc-standard.

As for the MATE parsers, we have applied both
the graph-based and the transition-based parser.

TurboParser was applied using the three stan-
dard configurations (basic, standard, full).

Concerning ZPar, the main difficulty emerged
in 2014 (i.e., the fact that sentences with more than
100 tokens needed 70 GB of RAM) is no longer
present and so its use is rather straightforward.

As for the new parsers, the only problems dur-
ing installation concerned an issue with the ver-
sion of the C++ compiler needed for successfully
compiling LSTM parser.

For some of the parsers there is the possibil-
ity of exploiting word embeddings (RBG, Stan-
ford parser, LSTM, EmoryNLP) or Brown clus-
tering (YARA parser). As for word embeddings
(WEs), we exploited the following (both built us-
ing word2vec):

• word embeddings of size 300 learned on
WackyPedia/itWaC (a corpus of more than 1
billion tokens)13;

• word embeddings of size 50 produced
in the project PAISÀ (Piattaforma per
l’Apprendimento dell’Italiano Su corpora
Annotati)14 on a corpus of 250 million to-
kens.

In general, WEs of size 300 produced an in-
crease in performance, while those of size 50 pro-
duced a decrease in performance (with the excep-

12http://nil.fdi.ucm.es/maltoptimizer/
13http://clic.cimec.unitn.it/

˜georgiana.dinu/down/
14http://www.corpusitaliano.it/en/

index.html



LAS UAS LA
RBG (full, w/ WEs - size=300) 87.72 90.00 93.03
RBG (standard, w/ WEs - size=300) 87.63 89.91 93.03
RBG (full, w/o WEs) 87.33 89.94 92.41
RBG (standard, w/o WEs) 87.33 89.86 92.43
MATE transition-based 87.07 89.69 92.30
MATE graph-based 86.91 89.53 92.67
TurboParser (model type=full) 86.53 89.20 92.22
TurboParser (model type=standard) 86.45 88.96 92.29
ZPar 86.32 88.65 92.40
LSTM (EMNLP 2015, char-based w/ WEs - size=300) 86.07 88.96 92.15
RBG (basic, w/o WEs) 85.99 88.53 91.71
MaltParser (Nivre eager -PP head) 85.82 88.29 91.62
EmoryNLP (w/o WEs) 85.30 87.68 91.51
TurboParser (model type=basic) 84.90 87.28 91.26
DeSR (MLP) 84.61 87.18 90.79
MaltParser (Nivre standard - MaltOptimizer) 84.44 87.17 90.94
LSTM (ACL 2015, w/ WEs - size=300) 84.20 87.13 90.80
LSTM (EMNLP 2015, char-based w/o WEs) 84.13 87.32 90.75
YARA parser (w/o BCs) 83.87 86.79 90.34
LSTM (ACL 2015, w/o WEs) 83.86 86.95 90.56
Stanford NN dependency parser (w/ WEs - size=50) 83.68 86.50 90.85

Table 1: Results on the EVALITA 2014 test set without considering punctuation, in terms of Labeled
Attachment Score (LAS), Unlabeled Attachment Score (UAS) and Label Accuracy (LA).

tion of the Stanford NN dependency parser, which
produced results comparable to other parsers with
WEs of size 50 and absurdly low results with those
of size 300). We were not able to successfully run
the EmoryNLP parser with WEs. The use of WEs
needs further investigation.

As for the use of Brown clusters (BCs), we are
still working to build suitable resources for Ital-
ian, so the YARA Parser was used with standard
settings and without Brown clusters.

The experiments were performed using the
splits provided by the EVALITA 2014 organisers:
training on the training set, tuning (if any) using
the development set and final test on the test set.

In Table 1 we report the parser results ranked
according to decreasing Labeled Accuracy Score
(LAS), not considering punctuation. We have
grouped together the parsers if the differences be-
tween their results (in terms of LAS) are not statis-
tically significant (computation performed using
DEPENDABLE (Choi et al., 2015)).

The results obtained by the best system sub-
mitted to the official evaluation at EVALITA
2014 (Attardi and Simi, 2014) are: 87.89 (LAS),
90.16 (UAS). More details about the task and the
results obtained by the participants are available
in Bosco et al. (2014).

5 Conclusions

In the paper we have reported on work in progress
on the comparison between several state-of-the-art
dependency parsers on the Italian Stanford Depen-
dency Treebank (ISDT).

We are already working to widen the scope of
the comparison including more parsers and to per-
form an analysis of the results obtained by the dif-
ferent parsers considering not only their perfor-
mance but also their behaviour in terms of speed,
CPU load at training and parsing time, ease of use,
licence agreement, . . .

The next step would be to apply the parsers in
a multilingual setting, exploiting the availability
of treebanks based on Universal Dependencies in
many languages (Nivre et al., 2016)15.
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