
Comparing State-of-the-art Dependency Parsers
on the Italian Stanford Dependency Treebank

Alberto Lavelli
FBK-irst

via Sommarive, 18 - Povo
I-38123 Trento (TN) - ITALY

lavelli@fbk.eu

Abstract

English. In the last decade, many accu-
rate dependency parsers have been made
publicly available. It can be difficult for
non-experts to select a good off-the-shelf
parser among those available. This is even
more true when working on languages dif-
ferent from English, because parsers have
been tested mainly on English treebanks.
Our analysis is focused on Italian and re-
lies on the Italian Stanford Dependency
Treebank (ISDT). This work is a contri-
bution to help non-experts understand how
difficult it is to apply a specific depen-
dency parser to a new language/treebank
and choose a parser that meets their needs.

Italiano. Nell’ultimo decennio sono stati
resi disponibili molti analizzatori sintattici
a dipendenza. Per i non esperti può es-
sere difficile sceglierne uno pronto all’uso
tra quelli disponibili. A maggior ragione
se si lavora su lingue diverse dall’inglese,
perché gli analizzatori sono stati appli-
cati soprattutto su treebank inglesi. La
nostra analisi è dedicata all’italiano e
si basa sull’Italian Stanford Dependency
Treebank (ISDT). Questo articolo è un
contributo per aiutare i non esperti a
capire quanto è difficile applicare un anal-
izzatore a una nuova lingua/treebank e a
scegliere quello più adatto.

1 Introduction

In the last decade, there has been an increasing in-
terest in dependency parsing, witnessed by the or-
ganisation of various shared tasks, e.g. Buchholz
and Marsi (2006), Nivre et al. (2007), Seddah et al.
(2013), Seddah et al. (2014). Concerning Italian,
there have been tasks on dependency parsing in

the first four editions of the EVALITA evaluation
campaign (Bosco et al., 2008; Bosco et al., 2009;
Bosco and Mazzei, 2011; Bosco et al., 2014). In
the 2014 edition, the task on dependency parsing
exploited the Italian Stanford Dependency Tree-
bank (ISDT), a treebank featuring an annotation
based on Stanford Dependencies (de Marneffe and
Manning, 2008).

This paper is a follow-up of Lavelli (2014b)
and reports the experience in applying an up-
dated list of state-of-the-art dependency parsers
on ISDT. It can be difficult for non-experts to
select a good off-the-shelf parser among those
available. This is even more true when working
on languages different from English, given that
parsers have been tested mainly on English tree-
banks (and in particular on the WSJ portion of
the PennTreebank). This work is a contribution to
help practitioners understand how difficult it is to
apply a specific dependency parser to a new lan-
guage/treebank and choose a parser to optimize
their desired speed/accuracy trade-off.

As in many other NLP fields, there are very few
comparative articles where different parsers are di-
rectly run by the authors and their performance
compared (Daelemans and Hoste, 2002; Hoste et
al., 2002; Daelemans et al., 2003). Most of the pa-
pers simply present the results of a newly proposed
approach and compare them with the results re-
ported in previous articles. In other cases, the pa-
pers are devoted to the application of the same tool
to different languages/treebanks. A notable excep-
tion is the study reported in Choi et al. (2015),
where the authors present a comparative analysis
of ten leading statistical dependency parsers on a
multi-genre corpus of English.

It is important to stress that the comparison pre-
sented in this paper concerns tools used more or
less out of the box and that the results cannot be
used to compare specific characteristics like: pars-
ing algorithms, learning systems, . . .



2 Parsers

The choice of the parsers used in this study
started from the ones already applied in a previous
study (Lavelli, 2014b), i.e. MaltParser, the MATE
dependency parsers, TurboParser, and ZPar. We
then identified a few other freely available de-
pendency parsers that have shown state-of-the-
art performance. Some of such parsers are in-
cluded in the study in Choi et al. (2015) and oth-
ers have been made publicly available more re-
cently. The additional parsers included in this pa-
per are DeSR, the Stanford Neural Network de-
pendency parser, EmoryNLP, RBG, YARA Parser,
and LSTM parser.

Differently from what was done in the previous
study, this time we have not included approaches
based on combination of parsers’ results, such as
ensemble or stacking. They usually obtain top per-
formance (see e.g. Attardi and Simi (2014) at
EVALITA 2014) but in this case we focus on sim-
plicity and ease of use rather than on absolute per-
formance. Below you may find short descriptions
of the parsers reported in the paper.

MaltParser (Nivre et al., 2006) (version 1.8)
implements the transition-based approach to de-
pendency parsing, which has two essential com-
ponents: (i) a nondeterministic transition system
for mapping sentences to dependency trees; (ii) a
classifier that predicts the next transition for ev-
ery possible system configuration. MaltParser in-
cludes different built-in transition systems, dif-
ferent classifiers and techniques for recovering
non-projective dependencies with strictly projec-
tive parsers.

The MATE tools1 include both a graph-based
parser (Bohnet, 2010) and a transition-based
parser (Bohnet and Nivre, 2012; Bohnet and
Kuhn, 2012). For the languages of the 2009
CoNLL Shared Task, the graph-based MATE
parser reached accuracy scores similar or above
the top performing systems with fast processing
(obtained with the use of Hash Kernels and par-
allel algorithms). The transition-based MATE
parser is a model that takes into account complete
structures as they become available to rescore the
elements of a beam, combining the advantages of
transition-based and graph-based approaches.

TurboParser (Martins et al., 2013)2 (version

1https://code.google.com/p/mate-tools/
2http://www.ark.cs.cmu.edu/

TurboParser/

2.3) is a C++ package that implements non-
projective graph-based dependency parsing ex-
ploiting third-order features. The approach uses
AD3, an accelerated dual decomposition algo-
rithm extended to handle specialized head au-
tomata and sequential head bigram models.

ZPar (Zhang and Nivre, 2011) (version 0.75)
is a transition-based parser implemented in C++.
ZPar supports multiple languages and multiple
grammar formalisms. ZPar has been most heavily
developed for Chinese and English, while it pro-
vides generic support for other languages. It lever-
ages a global discriminative training and beam-
search framework.

DeSR (Attardi and Dell’Orletta, 2009) version
1.4.3 is a shift-reduce dependency parser, which
uses a variant of the approach of Yamada and Mat-
sumoto (2003). It is capable of dealing directly
with non-projective parsing, by means of specific
non-projective transition rules (Attardi, 2006). It
is highly configurable: one can choose which clas-
sifier (e.g. SVM or Multi-Layer Perceptron) and
which feature templates to use, and the format of
the input, just by editing a configuration file.

EmoryNLP (Choi and McCallum, 2013)3 (pre-
viously ClearNLP) dependency parser (version
1.1.1) uses a transition-based, non-projective pars-
ing algorithm showing a linear-time speed for both
projective and non-projective parsing.

The Stanford neural network dependency
parser (Chen and Manning, 2014)4 is a transition-
based parser which produces typed dependency
parses using a neural network which uses word
embeddings as features besides forms and POS
tags. It also uses no beam.

RBG (Lei et al., 2014; Zhang et al., 2014b;
Zhang et al., 2014a)5 is based on a low-rank fac-
torization method that enables to map high dimen-
sional feature vectors into low dimensional repre-
sentations. The method maintains the parameters
as a low-rank tensor to obtain low dimensional
representations of words in their syntactic roles,
and to leverage modularity in the tensor for easy
training with online algorithms.

YARA Parser (Rasooli and Tetreault, 2015)6 is
an implementation of the arc-eager dependency
model. It uses an average structured perceptron

3http://nlp.mathcs.emory.edu/
4http://nlp.stanford.edu/software/

nndep.shtml
5https://github.com/taolei87/RBGParser
6https://github.com/yahoo/YaraParser



as classifier and a beam size of 64. The feature
setting is from Zhang and Nivre (2011) with ad-
ditional Brown cluster features.

LSTM parser (Dyer et al., 2015; Ballesteros et
al., 2015)7 is a transition based dependency parser
with state embeddings computed by LSTM RNNs
and an alternative char-based model exploiting
character embeddings as features. Both the mod-
els are applied in the experiments.

The list of parsers is still in progress because
the field of dependency parsing is in constant evo-
lution. In mid-May, SyntaxNet, the dependency
parser by Google, was made publicly available; a
few days later BIST parser (that claims to be “A
faster and more accurate parser than Google’s Mc-
Parseface”) was announced to become public.

SyntaxNet (Andor et al., 2016)8, BIST
parser (Kiperwasser and Goldberg, 2016)9, and
spaCy10 are not yet included in our study because
we are still trying to make them working in a sat-
isfactory way.

3 Data Set

The experiments reported in the paper are per-
formed on the Italian Stanford Dependency Tree-
bank (ISDT) (Bosco et al., 2013) version 2.0 re-
leased in the context of the EVALITA 2014 evalu-
ation campaign on Dependency Parsing for Infor-
mation Extraction (Bosco et al., 2014)11. There
are three main novelties with respect to the pre-
viously available Italian treebanks: (i) the size of
the dataset, much bigger than the resources used in
the previous EVALITA campaigns; (ii) the annota-
tion scheme, compliant to de facto standards at the
level of both representation format (CoNLL) and
adopted tagset (Stanford Dependency Scheme);
(iii) its being defined with a specific view to sup-
porting information extraction tasks, a feature in-
herited from the Stanford Dependency scheme.

The training set contains 7,414 sentences
(158,561 tokens), the development set 564 sen-
tences (12,014 tokens), and the test set 376 sen-
tences (9,066 tokens).

7https://github.com/clab/lstm-parser
8https://github.com/tensorflow/models/

tree/master/syntaxnet
9https://github.com/elikip/bist-parser

10https://spacy.io/, https://github.com/
spacy-io/spaCy

11http://www.evalita.it/2014/tasks/dep_
par4IE.

4 Experiments

The level of interaction with the authors of the
parsers varied. For MaltParser, MATE parsers,
TurboParser, and ZPar we have mainly exploited
the experience gained in the context of EVALITA
2014 (Lavelli, 2014a).

Concerning MaltParser, in addition to using
the best performing configuration at EVALITA
2014 (Nivre’s arc-eager, PP-head), we have used
MaltOptimizer12 (Ballesteros and Nivre, 2014) to
identify the best configuration. This was done to
be fair to the other parsers, given that MaltParser’s
best configuration was the result of extensive fea-
ture selection at the CoNLL 2006 shared task. Ac-
cording to MaltOptimizer, the best configuration
is Nivre’s arc-standard.

As for the MATE parsers, we have applied both
the graph-based and the transition-based parser.

TurboParser was applied using the three stan-
dard configurations (basic, standard, full).

Concerning ZPar, the main difficulty emerged
in 2014 (i.e., the fact that sentences with more than
100 tokens needed 70 GB of RAM) is no longer
present and so its use is rather straightforward.

As for the new parsers, the only problems dur-
ing installation concerned an issue with the ver-
sion of the C++ compiler needed for successfully
compiling LSTM parser.

For some of the parsers there is the possibil-
ity of exploiting word embeddings (RBG, Stan-
ford parser, LSTM, EmoryNLP) or Brown clus-
tering (YARA parser). As for word embeddings
(WEs), we exploited the following (both built us-
ing word2vec):

• word embeddings of size 300 learned on
WackyPedia/itWaC (a corpus of more than 1
billion tokens)13;

• word embeddings of size 50 produced
in the project PAISÀ (Piattaforma per
l’Apprendimento dell’Italiano Su corpora
Annotati)14 on a corpus of 250 million to-
kens.

In general, WEs of size 300 produced an in-
crease in performance, while those of size 50 pro-
duced a decrease in performance (with the excep-

12http://nil.fdi.ucm.es/maltoptimizer/
13http://clic.cimec.unitn.it/

˜georgiana.dinu/down/
14http://www.corpusitaliano.it/en/

index.html



LAS UAS LA
RBG (full, w/ WEs - size=300) 87.72 90.00 93.03
RBG (standard, w/ WEs - size=300) 87.63 89.91 93.03
RBG (full, w/o WEs) 87.33 89.94 92.41
RBG (standard, w/o WEs) 87.33 89.86 92.43
MATE transition-based 87.07 89.69 92.30
MATE graph-based 86.91 89.53 92.67
TurboParser (model type=full) 86.53 89.20 92.22
TurboParser (model type=standard) 86.45 88.96 92.29
ZPar 86.32 88.65 92.40
LSTM (EMNLP 2015, char-based w/ WEs - size=300) 86.07 88.96 92.15
RBG (basic, w/o WEs) 85.99 88.53 91.71
MaltParser (Nivre eager -PP head) 85.82 88.29 91.62
EmoryNLP (w/o WEs) 85.30 87.68 91.51
TurboParser (model type=basic) 84.90 87.28 91.26
DeSR (MLP) 84.61 87.18 90.79
MaltParser (Nivre standard - MaltOptimizer) 84.44 87.17 90.94
LSTM (ACL 2015, w/ WEs - size=300) 84.20 87.13 90.80
LSTM (EMNLP 2015, char-based w/o WEs) 84.13 87.32 90.75
YARA parser (w/o BCs) 83.87 86.79 90.34
LSTM (ACL 2015, w/o WEs) 83.86 86.95 90.56
Stanford NN dependency parser (w/ WEs - size=50) 83.68 86.50 90.85

Table 1: Results on the EVALITA 2014 test set without considering punctuation, in terms of Labeled
Attachment Score (LAS), Unlabeled Attachment Score (UAS) and Label Accuracy (LA).

tion of the Stanford NN dependency parser, which
produced results comparable to other parsers with
WEs of size 50 and absurdly low results with those
of size 300). We were not able to successfully run
the EmoryNLP parser with WEs. The use of WEs
needs further investigation.

As for the use of Brown clusters (BCs), we are
still working to build suitable resources for Ital-
ian, so the YARA Parser was used with standard
settings and without Brown clusters.

The experiments were performed using the
splits provided by the EVALITA 2014 organisers:
training on the training set, tuning (if any) using
the development set and final test on the test set.

In Table 1 we report the parser results ranked
according to decreasing Labeled Accuracy Score
(LAS), not considering punctuation. We have
grouped together the parsers if the differences be-
tween their results (in terms of LAS) are not statis-
tically significant (computation performed using
DEPENDABLE (Choi et al., 2015)).

The results obtained by the best system sub-
mitted to the official evaluation at EVALITA
2014 (Attardi and Simi, 2014) are: 87.89 (LAS),
90.16 (UAS). More details about the task and the
results obtained by the participants are available
in Bosco et al. (2014).

5 Conclusions

In the paper we have reported on work in progress
on the comparison between several state-of-the-art
dependency parsers on the Italian Stanford Depen-
dency Treebank (ISDT).

We are already working to widen the scope of
the comparison including more parsers and to per-
form an analysis of the results obtained by the dif-
ferent parsers considering not only their perfor-
mance but also their behaviour in terms of speed,
CPU load at training and parsing time, ease of use,
licence agreement, . . .

The next step would be to apply the parsers in
a multilingual setting, exploiting the availability
of treebanks based on Universal Dependencies in
many languages (Nivre et al., 2016)15.

Acknowledgments

We thank the authors of the parsers for making
them freely available, for kindly answering our
questions and for providing useful suggestions.
We thank the reviewers for valuable suggestions
to improve this article.

15http://universaldependencies.org/



References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. CoRR,
abs/1603.06042.

Giuseppe Attardi and Felice Dell’Orletta. 2009. Re-
verse revision and linear tree combination for de-
pendency parsing. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, Companion Volume:
Short Papers, pages 261–264, Boulder, Colorado,
June. Association for Computational Linguistics.

Giuseppe Attardi and Maria Simi. 2014. Dependency
parsing techniques for information extraction. In
Proceedings of EVALITA 2014.

Giuseppe Attardi. 2006. Experiments with a multi-
language non-projective dependency parser. In Pro-
ceedings of the Tenth Conference on Computational
Natural Language Learning (CoNLL-X), pages 166–
170, New York City, June. Association for Compu-
tational Linguistics.

Miguel Ballesteros and Joakim Nivre. 2014. MaltOp-
timizer: Fast and effective parser optimization. Nat-
ural Language Engineering, FirstView:1–27, 10.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by mod-
eling characters instead of words with LSTMs. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
349–359, Lisbon, Portugal, September. Association
for Computational Linguistics.

Bernd Bohnet and Jonas Kuhn. 2012. The best of
both worlds – a graph-based completion model for
transition-based parsers. In Proceedings of the 13th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics, pages 77–87,
Avignon, France, April. Association for Computa-
tional Linguistics.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Pro-
ceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1455–1465, Jeju Island, Korea, July. Association for
Computational Linguistics.

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010), pages 89–97, Bei-
jing, China, August. Coling 2010 Organizing Com-
mittee.

Cristina Bosco and Alessandro Mazzei. 2011. The
EVALITA 2011 parsing task: the dependency track.
In Working Notes of EVALITA 2011, pages 24–25.

Cristina Bosco, Alessandro Mazzei, Vincenzo Lom-
bardo, Giuseppe Attardi, Anna Corazza, Alberto
Lavelli, Leonardo Lesmo, Giorgio Satta, and Maria
Simi. 2008. Comparing Italian parsers on a com-
mon treebank: the EVALITA experience. In Pro-
ceedings of LREC 2008.

Cristina Bosco, Simonetta Montemagni, Alessandro
Mazzei, Vincenzo Lombardo, Felice DellOrletta,
and Alessandro Lenci. 2009. Evalita09 parsing
task: comparing dependency parsers and treebanks.
In Proceedings of EVALITA 2009.

Cristina Bosco, Simonetta Montemagni, and Maria
Simi. 2013. Converting Italian treebanks: Towards
an Italian Stanford Dependency Treebank. In Pro-
ceedings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse, pages 61–69,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

Cristina Bosco, Felice Dell’Orletta, Simonetta Monte-
magni, Manuela Sanguinetti, and Maria Simi. 2014.
The EVALITA 2014 dependency parsing task. In
Proceedings of EVALITA 2014.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency parsing.
In Proceedings of the Tenth Conference on Com-
putational Natural Language Learning (CoNLL-X),
pages 149–164, New York City, June. Association
for Computational Linguistics.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 740–750, Doha, Qatar, Octo-
ber. Association for Computational Linguistics.

Jinho D. Choi and Andrew McCallum. 2013.
Transition-based dependency parsing with selec-
tional branching. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1052–
1062, Sofia, Bulgaria, August. Association for Com-
putational Linguistics.

Jinho D. Choi, Joel Tetreault, and Amanda Stent. 2015.
It depends: Dependency parser comparison using a
web-based evaluation tool. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 387–396, Beijing,
China, July. Association for Computational Linguis-
tics.

Walter Daelemans and Véronique Hoste. 2002. Eval-
uation of machine learning methods for natural lan-
guage processing tasks. In Proceedings of the Third
International Conference on Language Resources
and Evaluation (LREC 2002), Las Palmas, Spain.



Walter Daelemans, Véronique Hoste, Fien De Meul-
der, and Bart Naudts. 2003. Combined optimiza-
tion of feature selection and algorithm parameters
in machine learning of language. In Proceedings of
the 14th European Conference on Machine Learning
(ECML 2003), Cavtat-Dubronik, Croatia.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies rep-
resentation. In Coling 2008: Proceedings of the
workshop on Cross-Framework and Cross-Domain
Parser Evaluation, pages 1–8, Manchester, UK, Au-
gust. Coling 2008 Organizing Committee.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334–343, Beijing, China, July. Asso-
ciation for Computational Linguistics.

Véronique Hoste, Iris Hendrickx, Walter Daelemans,
and Antal van den Bosch. 2002. Parameter
optimization for machine-learning of word sense
disambiguation. Natural Language Engineering,
8(4):311–325.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. CoRR,
abs/1603.04351.

Alberto Lavelli. 2014a. Comparing state-of-the-art
dependency parsers for the EVALITA 2014 depen-
dency parsing task. In Proceedings of EVALITA
2014.

Alberto Lavelli. 2014b. A preliminary comparison
of state-of-the-art dependency parsers on the Italian
Stanford Dependency Treebank. In Proceedings of
the first Italian Computational Linguistics Confer-
ence (CLiC-it 2014).

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-rank tensors for scor-
ing dependency structures. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1381–1391, Baltimore, Maryland, June. Association
for Computational Linguistics.

Andre Martins, Miguel Almeida, and Noah A. Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
617–622, Sofia, Bulgaria, August. Association for
Computational Linguistics.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
MaltParser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of the 5th In-
ternational Conference on Language Resources and
Evaluation (LREC), pages 2216–2219.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages
915–932, Prague, Czech Republic, June. Associa-
tion for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, et al.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC 2016), Portorož, Slovenia,
May. European Language Resources Association
(ELRA).

Mohammad Sadegh Rasooli and Joel R. Tetreault.
2015. Yara parser: A fast and accurate dependency
parser. CoRR, abs/1503.06733.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, et al.
2013. Overview of the SPMRL 2013 shared
task: A cross-framework evaluation of parsing
morphologically rich languages. In Proceedings
of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 146–182,
Seattle, Washington, USA, October. Association for
Computational Linguistics.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty.
2014. Introducing the SPMRL 2014 shared task
on parsing morphologically-rich languages. In Pro-
ceedings of the First Joint Workshop on Statisti-
cal Parsing of Morphologically Rich Languages and
Syntactic Analysis of Non-Canonical Languages,
pages 103–109, Dublin, Ireland, August. Dublin
City University.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188–193, Portland, Ore-
gon, USA, June. Association for Computational Lin-
guistics.

Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2014a. Greed is good if randomized: New
inference for dependency parsing. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1013–
1024, Doha, Qatar, October. Association for Com-
putational Linguistics.

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi
Jaakkola, and Amir Globerson. 2014b. Steps to
excellence: Simple inference with refined scoring
of dependency trees. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
197–207, Baltimore, Maryland, June. Association
for Computational Linguistics.


