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Abstract

English. This paper describes the
Unitor system that participated to the
SENTIment POLarity Classification task
proposed in Evalita 2016. The system im-
plements a classification workflow made
of several Convolutional Neural Network
classifiers, that generalize the linguistic in-
formation observed in the training tweets
by considering also their context. More-
over, sentiment specific information is
injected in the training process by us-
ing Polarity Lexicons automatically ac-
quired through the automatic analysis of
unlabeled collection of tweets. Unitor
achieved the best results in the Subjectiv-
ity Classification sub-task, and it scored
2nd in the Polarity Classification sub-task,
among about 25 different submissions.

Italiano. Questo lavoro descrive il sis-
tema Unitor valutato nel task di SEN-
TIment POLarity Classification proposto
all’interno di Evalita 2016. Il sistema é
basato su un workflow di classificazione
implementato usando Convolutional Neu-
ral Network, che generalizzano le evidenze
osservabili all’interno dei dati di adde-
stramento analizzando i loro contesti e
sfruttando lessici specifici per la analisi
del sentimento, generati automaticamente.
Il sistema ha ottenuto ottimi risultati, otte-
nendo la miglior performance nel task di
Subjectivity Classification e la seconda nel
task di Polarity Classification.

1 Introduction

In this paper, the Unitor system participating
in the Sentiment Polarity Classification (SEN-
TIPOLC) task (Barbieri et al., 2016) within the

Evalita 2016 evaluation campaign is described.
The system is based on a cascade of three clas-
sifiers based on Deep Learning methods and it
has been applied to all the three sub-tasks of
SENTIPOLC: Subjectivity Classification, Polar-
ity Classification and the pilot task called Irony
Detection. Each classifier is implemented with
a Convolutional Neural Network (CNN) (LeCun
et al., 1998) according the modeling proposed in
(Croce et al., 2016). The adopted solution ex-
tends the CNN architecture proposed in (Kim,
2014) with (i) sentiment specific information de-
rived from an automatically derived polarity lex-
icon (Castellucci et al., 2015a), and (ii) with the
contextual information associated with each tweet
(see (Castellucci et al., 2015b) for more informa-
tion about the contextual modeling in SA in Twit-
ter). The Unitor system ranked 1st in the Sub-
jectivity Classification task and 2nd in the Polar-
ity Detection task among the unconstrained sys-
tems, resulting as one of the best solution in the
challenge. It is a remarkable result as the CNNs
have been trained without any complex feature en-
gineering but adopting almost the same modeling
in each sub-task. The proposed solution allows
to achieve state-of-the-art results in Subjectivity
Classification and Polarity Classification task by
applying unsupervised analysis of unlabeled data
that can be easily gathered by Twitter.

In Section 2 the deep learning architecture
adopted in Unitor is presented, while the clas-
sification workflow is presented in 3. In Section
4 the experimental results are reported and dis-
cussed, while Section 5 derives the conclusions.

2 A Sentiment and Context aware
Convolutional Neural Networks

The Unitor system is based on the Convolu-
tional Neural Network (CNN) architecture for text
classification proposed in (Kim, 2014), and further
extended in (Croce et al., 2016). This deep net-



work is characterized by 4 layers (see Figure 1).

The first layer represents the input through word
embedding: it is a low-dimensional representation
of words, which is derived by the unsupervised
analysis of large-scale corpora, with approaches
similar to (Mikolov et al., 2013). The embedding
of a vocabulary V is a look-up table E, where
each element is the d−dimensional representation
of a word. Details about this representation will
be discussed in the next sections. Let xi ∈ Rd be
the d-dimensional representation of the i-th word.
A sentence of length n is represented through the
concatenation of the word vectors composing it,
i.e., a matrix I whose dimension is n× d.

The second layer represents the convolutional
features that are learned during the training stage.
A filter, or feature detector, W ∈ Rf×d, is applied
over the input layer matrix producing the learned
representations. In particular, a new feature ci is
learned according to: ci = g(W · Ii:i+f−1 + b),
where g is a non-linear function, such as the
rectifier function, b ∈ R is a bias term and
Ii:i+f−1 is a portion of the input matrix along
the first dimension. In particular, the filter slides
over the input matrix producing a feature map
c = [c1, . . . , cn−h+1]. The filter is applied over the
whole input matrix by assuming two key aspects:
local invariance and compositionality. The former
specifies that the filter should learn to detect pat-
terns in texts without considering their exact po-
sition in the input. The latter specifies that each
local patch of height f , i.e., a f -gram, of the input
should be considered in the learned feature repre-
sentations. Ideally, a f -gram is composed through
W into a higher level representation.

In practice, multiple filters of different heights
can be applied resulting in a set of learned
representations, which are combined in a third
layer through the max-over-time operation, i.e.,
c̃ = max{c}. It is expected to select the most
important features, which are the ones with the
highest value, for each feature map. The max-
over-time pooling operation serves also to make
the learned features of a fixed size: it allows to
deal with variable sentence lengths and to adopt
the learned features in fully connected layers.

This representation is finally used in the fourth
layer, that is a fully connected softmax layer.
It classifies the example into one of the cate-
gories of the task. In particular, this layer is
characterized by a parameter matrix S and a

bias term bc that is used to classify a message,
given the learned representations c̃. In particu-
lar, the final classification y is obtained through
argmaxy∈Y (softmax(S · c̃+ bc)), where Y is
the set of classes of interest.

In order to reduce the risk of over-fitting, two
forms of regularization are applied, as in (Kim,
2014). First, a dropout operation over the penulti-
mate layer (Hinton et al., 2012) is adopted to pre-
vent co-adaptation of hidden units by randomly
dropping out, i.e., setting to zero, a portion of
the hidden units during forward-backpropagation.
The second regularization is obtained by con-
straining the l2 norm of S and bc.

2.1 Injecting Sentiment Information through
Polarity Lexicons

In (Kim, 2014), the use of word embeddings is
advised to generalize lexical information. These
word representations can capture paradigmatic re-
lationships between lexical items. They are best
suited to help the generalization of learning al-
gorithms in natural language tasks. However,
paradigmatic relationships do not always reflect
the relative sentiment between words. In Deep
Learning, it is a common practice to make the in-
put representations trainable in the final learning
stages. This is a valid strategy, but it makes the
learning process more complex. In fact, the num-
ber of learnable parameters increases significantly,
resulting in the need of more annotated examples
in order to adequately estimate them.

We advocate the adoption of a multi-channel in-
put representation, which is typical of CNNs in
image processing. A first channel is dedicated to
host representations derived from a word embed-
ding. A second channel is introduced to inject
sentiment information of words through a large-
scale polarity lexicon, which is acquired accord-
ing to the methodology proposed in (Castellucci
et al., 2015a). This method leverages on word
embedding representations to assign polarity in-
formation to words by transferring it from sen-
tences whose polarity is known. The resultant lex-
icons are called Distributional Polarity Lexicons
(DPLs). The process is based on the capability
of word embedding to represent both sentences
and words in the same space (Landauer and Du-
mais, 1997). First, sentences (here tweets) are la-
beled with some polarity classes: in (Castellucci
et al., 2015a) this labeling is achieved by apply-
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Figure 1: The Convolutional Neural Network architecture adopted for the Unitor system.

ing a Distant Supervision (Go et al., 2009) heuris-
tic. The labeled dataset is projected in the em-
bedding space by applying a simple but effective
linear combination of the word vectors composing
each sentence. Then, a polarity classifier is trained
over these sentences in order to emphasize those
dimensions of the space more related to the polar-
ity classes. The DPL is generated by classifying
each word (represented in the embedding through
a vector) with respect to each targeted class, using
the confidence level of the classification to derive
a word polarity signature. For example, in a DPL
the word ottimo is 0.89 positive, 0.04 negative and
0.07 neutral (see Table 1). For more details, please
refer to (Castellucci et al., 2015a).

Term w/o DPL w/ DPL

ottimo (0.89,0.04,0.07)
pessimo ottima
eccellente eccellente
ottima fantastico

peggiore (0.17,0.57,0.26)
peggior peggior
peggio peggio
migliore peggiori

triste (0.04,0.82,0.14)
deprimente deprimente
tristissima tristissima
felice depressa

Table 1: Similar words in the embedding without
(2ndcolumn) and with (3rdcolumn) DPL, whose
scores (positivity, negativity, neutrality) are in the
first column.

This method has two main advantages: first, it
allows deriving a signature for each word in the
embedding to be used in the CNN; second, this
method allows assigning sentiment information to
words by observing their usage. This represents
an interesting setting to observe sentiment related
phenomena, as often a word does not carry a senti-
ment if not immersed in a context (i.e., a sentence).

As proposed in (Croce et al., 2016), in order
to keep limited the computational complexity of
the training phase of CNN, we augment each vec-

tor from the embedding with the polarity scores
derived from the DPL1. In Table 1, a compari-
son of the most similar words of polarity carri-
ers is compared when the polarity lexicon is not
adopted (second column) and when the multi-
channel schema is adopted (third column). Notice
that, the DPL positively affects the vector repre-
sentations for SA. For example, the word pessimo
is no longer in set of the 3-most similar words of
the word ottimo. The polarity information cap-
tured in the DPL making words that are seman-
tically related and whose polarity agrees nearer in
the space.

2.2 Context-aware model for SA in Twitter

In (Severyn and Moschitti, 2015) a pre-training
strategy is suggested for the Sentiment Analy-
sis task. The adoption of heuristically classified
tweet messages is advised to initialize the network
parameters. The selection of messages is based
on the presence of emoticons (Go et al., 2009)
that can be related to polarities, e.g. :) and :(.
However, selecting messages only with emoticons
could potentially introduce many topically unre-
lated messages that use out-of-domain linguistic
expressions and limiting the contribution of the
pre-training. We instead suggest to adopt another
strategy for the selection of pre-training data. We
draw on the work in (Vanzo et al., 2014), where
topically related messages of the target domain
are selected by considering the reply-to or hash-
tag contexts of each message. The former (con-
versational context) is made of the stream of mes-
sages belonging to the same conversation in Twit-
ter, while the latter (hashtag context) is composed
by tweets preceding a target message and shar-
ing at least one hashtag with it. In (Vanzo et al.,
2014), these messages are first classified through a

1We normalize the embedding and the DPL vectors before
the juxtaposition.



context-unaware SVM classifier. Here, we are go-
ing to leverage on contextual information for the
selection of pre-training material for the CNN. We
select the messages both in the conversation con-
text, and we classify them with a context-unaware
classifier to produce the pre-training dataset.

3 The Unitor Classification Workflow

The SENTIPOLC challenge is made of three sub-
tasks aiming at investigating different aspects of
the subjectivity of short messages. The first sub-
task is the Subjectivity Classification that consists
in deciding whether a message expresses subjec-
tivity or it is objective. The second task is the
Polarity Classification: given a subjective tweet
a system should decide whether a tweet is ex-
pressing a neutral, positive, negative or conflict
position. Finally, the Irony Detection sub-task
aims at finding whether a message is express-
ing ironic content or not. The Unitor system
tackles each sub-task with a different CNN clas-
sifier, resulting in a classification workflow that
is summarized in the Algorithm 1: a message is
first classified with the Subjectivity CNN-based
classifier S; in the case the message is classified
as subjective (subjective=True), it is also
processed with the other two classifiers, the Po-
larity classifier P and the Irony classifier I. In
the case the message is first classified as objec-
tive (subjective=False), the remaining clas-
sifiers are not invoked.

Algorithm 1 Unitor classification workflow.
1: function TAG(tweet T, cnn S, cnn P, cnnI)
2: subjective = S(T)
3: if subjective==True then
4: polarity = P(T), irony = I(T)
5: else
6: polarity = none, irony = none
7: end if

return subjective, polarity, irony
8: end function

The same CNN architecture is adopted to im-
plement all the three classifiers and tweets are
modeled in the same way for the three sub-tasks.
Each classifier has been specialized to the corre-
sponding sub-task by adopting different selection
policies of the training material and adapting the
output layer of the CNN to the sub-task specific
classes. In detail, the Subjectivity CNN is trained
over the whole training dataset with respect to the
classes subjective and objective. The Po-
larity CNN is trained over the subset of subjec-

tive tweets, with respect to the classes neutral,
positive, negative and conflict. The
Irony CNN is trained over the subset of subjective
tweets, with respect to the classes ironic and
not-ironic.

Each CNN classifier has been trained in the
two settings specified in the SENTIPOLC guide-
lines: constrained and unconstrained. The con-
strained setting refers to a system that adopted
only the provided training data. For example, in
the constrained setting it is forbidden the use of
a word embedding generated starting from other
tweets. The unconstrained systems, instead, can
adopt also other tweets in the training stage. In
our work, the constrained CNNs are trained with-
out using a pre-computed word embedding in the
input layer. In order to provide input data to the
neural network, we randomly initialized the word
embedding, adding them to the parameters to be
estimated in the training process: in the follow-
ing, we will refer to the constrained classifica-
tion workflow as Unitor. The unconstrained
CNNs are instead initialized with pre-computed
word embedding and DPL. Notice that in this set-
ting we do not back-propagate over the input layer.
The word embedding is obtained from a corpus
downloaded in July 2016 of about 10 millions of
tweets. A 250-dimensional embedding is gener-
ated according to a Skip-gram model (Mikolov et
al., 2013)2. Starting from this corpus and the gen-
erated embedding, we acquired the DPL accord-
ing to the methodology described in Section 2.1.
The final embedding is obtained by juxtaposing
the Skip-gram vectors and the DPL3, resulting in a
253-dimensional representation for about 290, 000
words, as shown in Figure 1. The resulting clas-
sification workflow made of unconstrained classi-
fier is called Unitor-U1. Notice that these word
representations represent a richer feature set for
the CNN, however the cost of obtaining them is
negligible, as no manual activity is needed.

As suggested in (Croce et al., 2016), the con-
textual pre-training (see Section 2.2) is obtained
by considering the conversational contexts of the
provided training data. This dataset is made of
about 2, 200 new messages, that have been clas-
sified with the Unitor-U1 system. This set of

2The following settings are adopted: window 5 and min-
count 10 with hierarchical softmax

3Measures adopting only the Skip-gram vectors have been
pursued in the classifier tuning stage; these have highlighted
the positive contribution of the DPL.



messages is adopted to initialize the network pa-
rameters. In the following, the system adopting
the pre-trained CNNs is called Unitor-U2.

The CNNs have a number of hyper-parameters
that should be fine-tuned. The parameters we
investigated are: size of filters, i.e., capturing
2/3/4/5-grams. We combined together multiple
filter sizes in the same run. The number of filters
for each size: we selected this parameter among
50, 100 and 200. The dropout keep probability
has been selected among 0.5, 0.8 and 1.0. The fi-
nal parameters has been determined over a devel-
opment dataset, made of the 20% of the training
material. Other parameters have been kept fixed:
batch size (100), learning rate (0.001), number
of epochs (15) and L2 regularization (0.0). The
CNNs are implemented in Tensorflow4 and they
have been optimized with the Adam optimizer.

4 Experimental Results

In Tables 2, 3 and 4 the performances of the
Unitor systems are reported, respectively for the
task of Subjectivity Classification, Polarity Classi-
fication and Irony Detection. In the first Table (2)
the F-0 measure refers to the F1 measure of the
objective class, while F-1 refers to the F1 mea-
sure of the subjective class. In the Table 3 the F-0
measure refers to the F1 measure of the negative
class, while F-1 refers to the F1 measure of the
positive class. Notice that in this case, the neutral
class is mapped to a “not negative” and “not posi-
tive” classification and the conflict class is mapped
to a “negative” and “positive” classification. The
F-0 and F-1 measures capture also these configu-
rations. In Table 4 the F-0 measure refers to the
F1 measure of the not ironic class, while F-1 refers
to the F1 measure of the ironic class. Finally, F-
Mean is the mean between these F-0 and F-1 val-
ues, and is the score used by the organizers for
producing the final ranks.

System F-0 F-1 F-Mean Rank
Unitor-C .6733 .7535 .7134 4
Unitor-U1 .6784 .8105 .7444 1
Unitor-U2 .6723 .7979 .7351 2

Table 2: Subjectivity Classification results

Notice that our unconstrained system
(Unitor-U1) is the best performing system
in recognizing when a message is expressing a
subjective position or not, with a final F-mean of

4https://www.tensorflow.org/

.7444 (Table 2). Moreover, also the Unitor-U2
system is capable of adequately classify whether
a message is subjective or not. The fact that the
pre-trained system is not performing as well as
Unitor-U1, can be ascribed to the fact that the
pre-training material size is actually small. Dur-
ing the classifier tuning phases we adopted also
the hashtag contexts (about 20, 000 messages)
(Vanzo et al., 2014) to pre-train our networks: the
measures over the development set indicated that
probably the hashtag contexts were introducing
too many unrelated messages. Moreover, the
pre-training material has been classified with the
Unitor-U1 system. It could be the case that
the adoption of such added material was not so
effective, as instead demonstrated in (Croce et
al., 2016). In fact, in that work the pre-training
material was classified with a totally different
algorithm (Support Vector Machine) and a totally
different representation (kernel-based). In this
setting, the different algorithm and representation
produced a better and substantially different
dataset, in terms of covered linguistic phenomena
and their relationships with the target classes.
Finally, the constrained version of our system, ob-
tained a remarkable score of .7134, demonstrating
that the random initialization of the input vectors
can be also adopted for the classification of the
subjectivity of a message.

System F-0 F-1 F-Mean Rank
Unitor-C .6486 .6279 .6382 11
Unitor-U1 .6885 .6354 .6620 2
Unitor-U2 .6838 .6312 .6575 3

Table 3: Polarity Classification results

In Table 3 the Polarity Classification results
are reported. Also in this task, the performances
of the unconstrained systems are higher with re-
spect to the constrained one (.662 against .6382).
It demonstrates the usefulness of acquiring lex-
ical representations and use them as inputs for
the CNNs. Notice that the performances of the
Unitor classifiers are remarkable, as the two un-
constrained systems rank in 2nd and 3rd position.
The contribution of the pre-training is not positive,
as instead measured in (Croce et al., 2016). Again,
we believe that the problem resides in the size and
quality of the pre-training dataset.

In Table 4 the Irony Detection results are re-
ported. Our systems do not perform well, as all
the submitted systems reported a very low recall



System F-0 F-1 F-Mean Rank
Unitor-C .9358 .016 .4761 10
Unitor-U1 .9373 .008 .4728 11
Unitor-U2 .9372 .025 .4810 9

Table 4: Irony Detection results

for the ironic class: for example, the Unitor-U2
recall is only .0013, while its precision is .4286. It
can be due mainly to two factors. First, the CNN
devoted to the classification of the irony of a mes-
sage has been trained with a dataset very skewed
towards the not-ironic class: in the original dataset
only 868 over 7409 messages are ironic. Second, a
CNN observes local features (bi-grams, tri-grams,
. . . ) without ever considering global constraints.
Irony, is not a word-level phenomenon but, in-
stead, it is related to sentence or even social as-
pects. For example, the best performing system in
Irony Detection in SENTIPOLC 2014 (Castellucci
et al., 2014) adopted a specific feature, which es-
timates the violation of paradigmatic coherence of
a word with respect to the entire sentence, i.e., a
global information about a tweet. This is not ac-
counted for in the CNN here discussed, and ironic
sub-phrases are likely to be neglected.

5 Conclusions

The results obtained by the Unitor system at
SENTIPOLC 2016 are promising, as the system
won the Subjectivity Classification sub-task and
placed in 2nd position in the Polarity Classifica-
tion. While in the Irony Detection the results
are not satisfactory, the proposed architecture is
straightforward as its setup cost is very low. In
fact, the human effort in producing data for the
CNNs, i.e., the pre-training material and the ac-
quisition of the Distributional Polarity Lexicon is
very limited. In fact, the former can be easily ac-
quired with the Twitter Developer API; the latter is
realized through an unsupervised process (Castel-
lucci et al., 2015a). In the future, we need to bet-
ter model the irony detection problem, as proba-
bly the CNN here adopted is not best suited for
such task. In fact, irony is a more global linguistic
phenomenon than the ones captured by the (local)
convolutions operated by a CNN.
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