Authoring and annotation of desktop files in seMouse

Oscar Diaz, Jon Iturrioz, Sergio F. Anzuola
{oscar.diaz, jon.iturrioz, jibfeans} @ehu.es

The Onekin Group - University of the Basque Country
P. O. Box 649, P°. Manuel de Lardizabal, 1, 20.018 San Sebastidn (Spain)

Abstract. Coping with an increasing number of files is one of the challenges of
current desktops. Adding semantic capabilities is one possible solution. Aligned
with this proposal, this work introduces the notion of “knowledge folder” as a
coarse set of documents bound together by a common ontology. The ontology
plays the role of a clipboard which can be transparently accessed by the file ed-
itors to either export (i.e. annotation) or import (i.e. authoring) metadata within
the knowledge folder. Traditional desktop operations are now re-interpreted and
framed by this ontology: copy&paste becomes annotation&authoring, and folder
digging becomes property traversal. However, a desktop setting requires seam-
less tooling for these ideas to get through. To this end, this work proposes the
use of the mouse as the “semantic device”. Through the mouse, the user can
classify, annotate, author, and locate a file as a resource of the underlying ontol-
ogy. Moreover, being editor-independent, the mouse accounts for portability and
maintainability to face the myriad of formats and editors which characterizes cur-
rent desktops. The “semantic mouse” is implemented as a plug-in for Windows.

1 Introduction

Current desktops should be enhanced with mechanisms that permit users to abstract
away from files.This work builds on the notion of knowledge folder, i.e a coarse set
of information elements bound together by a common ontology. The folder contains
an ontology, the instantiations, and the resources being annotated. A desktop can hold
distinct knowledge folders, and a given file can belong to several knowledge folders. In
contrast with current folders, this mechanism attempts to abstract away from how files
are physically organised, by providing an ontology-based organisation.

As an example of a knowledge folder, consider all the documentation that goes with
aresearch project. This includes the project proposal (e.g. a Word file), bills being payed
by the project funds (e.g. Excel files), etc. These files can be scattered around distinct
(physical) folders. Even though, they can belong to the same knowledge folder as some
of the following clues indicate,

— data replication among documents (e.g. the funding body appears in the proposal
but it is also acknowledged on the articles),

— simultaneous access. More than a document is accessed during “a typing session”
(e.g. when writing the article, the proposal is checked out for the submission dead-
line),

— event correlation. Creation/removal of the documents are not totally independent
(e.g. a bill does not exist without a project proposal), etc.

Current desktops ignore this situation and treat files as isolated units. Today, we copy
and paste the text values from one file to another, and the ontology is kept (and man-
aged) in the users mind. And too often, file location turns into digging through a hier-
archical folder tree.

This paper presents how this situation can be improved by the introduction of
knowledge folders. Specifically, copying&pasting becomes annotating&authoring, and
folder digging becomes ontology traversal. By tapping current file structures into an on-
tology, authors can both populate the ontology (i.e. annotation), and reuse the instances
of the ontology while authoring a document. The ontology instances play the role of a
clipboard which can be transparently accessed by the file editors to either export (i.e.
annotation) or import (i.e. authoring) metadata within the knowledge folder. As for file
location, files are now resources of an ontology. This permits to enhance and contextu-
alize desktop search based on the ontology properties, and navigate along the ontology
associations.

Being in a desktop setting, we can not ignore usability. Handling of knowledge
folders should be as seamless as possible. Rather than providing separate tools for ex-
porting/importing (i.e. annotation/authoring), we strive to accommodate to the current
tools for traditional copy&paste operations: the mouse. This will certainly facilitate user
adoption.

To this end, the semantic mouse (seMouse) is introduced. By clicking on its middle
button, seMouse exports/imports properties from the ontology, regardless of the editor
you are working with. It does not matter whether you are working with Word, Power-
Point, Netscape, etc, the “semantic” button is available for annotation/authoring. In this
way, the user does not have to move to a new editor when annotating (like in SMORE
[2]), nor has to learn a new “ontological interface” when files from different formats are
edited (like in SemanticWord [3]).

Both, the support of knowledge folders as the underlying infrastructure, and the use
of the mouse as the device to interact with this infrastructure, are the main contributions
of this work towards making desktops semantic.

Next section introduces seMouse through five scenarios, namely, file classification,
annotation, authoring, semantic navigation and ontology editing.

2 seMouse at work

seMouse is an annotation/authoring device that achieves editor-independence by work-
ing at the operating-system level: the mouse. This section introduces seMouse with the
help of an example.

As a knowledge folder, consider the cluster of heterogeneous documents that goes
with a research project. This includes the project proposal (e.g. one Word file), bills
payed with the project funding (e.g. twenty Excel files), papers as deliverables of the
project (e.g. twenty files in both .pdf and .doc formats), participants (whose desktop
counterpart can be either the homepage, an .html resource, or a .pdf resource) and com-
ments (being realized as either emails or .doc resources).

Deliverable hasComment/commentsAbout

authors/authoredBy) +itle[1 V
keyword[*] 1 Comment
+abstract[1] +description

+author
+text

fundingBy/delivers
1

Participant | supervises/supervisedBy Project Bill
+fullname[1 +title[1 +description[1
+address[*] * « |+code[1] expends/chargedTo |+g[1]
+phone[*] +description[1] +date[1]
+category[1] | Participatesin/formedBy |+duration[1] 1 4 |+totalCost1]
+email[] +fundingBody[1] +seller[1]

Fig. 1. A sample ontology.

Regardless of their format and folder location, it is likely that a high degree of
contentreuse as well as frequent contextual navigations within this “file space” happens.
This is what makes this set of files a knowledge unit. Being in a participant -an html file-,
you frequently need to locate her project proposals -Word files-, or being in a project
proposal, the associated papers -PDF files- are commonly accessed.

A knowledge folder comprises an ontology (figure 1 shows the one for the sample
problem). Five classes are identified. Each class is characterized by a set of value-based
properties (e.g. title, keyword, abstract). Associations are defined between these classes
(e.g. a project is supervisedBy a participant) (termed ObjectProperty in OWL). And the
expressiveness of OWL can be used to define inverse and transitivity properties between
the associations.

Although the ontology is at the core of the semantic desktop, this paper focuses
on authoring and annotating resources of the ontology. We do not address how the
inference power of the ontology can achieve its full potential in a desktop setting.

Once the ontology has been set, the population process begins. The key idea is to
use the mouse as the semantic device so that interactions with the underlying ontology
are achieved via mouse clicks. Specifically, pressing the middle button on the mouse
causes an interaction with the ontology manager. This interaction is context-sensitive,
i.e. the button accomplishes distinct operations depending on the place the pointer sits
on. Next paragraphs introduce five scenarios of the use of the semantic mouse.

Scenario 1: file classification. First of all, files need to be identified as instances of
any of the ontology’s classes. This is achieved by opening a file, and pressing the middle
button. A menu pops up for the user to indicate to which class this file is a resource.

Scenario 2: annotation (see figure 2 and 3). Annotation&authoring becomes the
counterpart of copy&paste in traditional desktops, with the difference that now these
operations are conducted along the ontology net. What is being exported(i.e. copy) is
no longer a string but a class property of the ontology.

If a file has already been categorised, the annotation process may begin. If some
text is selected, the mouse is used to export this text as part of the value of a property
as it is shown in figure 2. Of course, the set of properties will depend on the class of

B2 Adobe Acrobat - [cream.pdf] ;‘EI_XJ

IE&rchivo Edicion Documento Herramientas Yer Veptana Avuda .—Jill(]
e EEoREoa@- 8- B> M| 1

|B-0-£-BL&«|[oqn -a|0DO0OED-

Authoring and Annotation of Web Pages in CREAM

This Deliverable abstract = =
L | mi Handschuh, Steffen Staab
Ei) ~ - o
In—== kewod | of Karlsruhe, 76128 Karlsruhe, Germany

Fig. 2. Scenario 2: annotation. Some text is selected. Being a deliverable file, the menu displays
properties of this class. The text will become the value of the chosen property.

0§ cordisProjects.doc - Microsoft Word = -0l x|
- frchive Edicion . Wer Insertar Formato Herramientas Tabla Ventana 7 Escriba una pregunta - X
Gl (3|4 3 & 100% - | Gdlectura ﬁ A4 Mormal +10pk » Times Mew Roman = i= B
Igﬁ-|-%|-2-|-3-|-4-|@-|-5-E-?-|-8-9-|-1t@|-11-|-12-|§3-|-14-|E5-|-16- -
Project full title: Semantic Mouse =
Pronosal/Contract no.:
ThisFreiect ¥ hther Coontract no.: fto be completed by Commission)
expends
farmed by aration of Annex I:
defivers Semantic Markup; Ontology, and RDFEditar » LI
supervised by P i
— Addnew Semantic: Annotation of Wweb Services [SAWS)
= Exit I Authoring and Annotation ofweb Pages in CREARM |
= = Facing document-pravider heterageneity in Knowledge Portals
Pag, 23 Sec, 3 23439 A Liry cal, LIS i e e | o | =R 0=

Fig. 3. Scenario 2: annotation. No text is selected. The menu shows associations of the file class.

the resource. In the example, title, keyword and abstract correspond to properties of the
deliverable class.

On the other hand, if no text is selected, the middle button is used to establish
associations with other files. This situation is exemplified in figure 3. In this case, the
CORDIS project template for EEC projects has been used. When the middle button
is pressed, a menu pops up for the user to link the current resource with other target
resources. The menu is customised for the current resource, that is, the associations
are restricted to those available for the current resource, whereas the target files are
also limited to those of the appropriated class. In the example, the association can only
be established with deliverables files since this is the destination class of the delivers
association.

Scenario 3: authoring (see figure 4). Associations being set during annotation can
now be exploited. For instance, the project resource can import the title of its associated
deliverable resources. In the example, the article “Authoring and Annotation of Web
Pages in CREAM” appears as a deliverable of the current file. By selecting this article,

Semantic Annotation of

Web Services (SAWE
= 1

This Project »

| RN |

expends
formed by
X delivers Authoring and Annotation ofweb Pages in CREARM Remove azsociation
supervised by Semantic Markup, Ontology, and ROFEditor p———— 7
abstract 3 @
0 Exit Add new (3 title: Authoring and Annotation ofweb Pages in CREAM
e T T3]
Pdg. 27 Ser. 4 2733 A 10,3cm Llin, 16 <ol 1 SRE MCA EXT S0B Inglés (Rein 7

Fig. 4. Scenario 3: authoring. The title of a deliverable is imported into a project resource.

the menu is extended rightwise to show up its properties. The user can select one of
these properties, and its value is inserted at the cursor place.

Scenario 4: semantic navigation . File location in current desktops frequently im-
plies folder digging. By contrast, semantic navigation strives to exploit the associative
behaviour of the human memory. A resource can be located from the resources it is
related to. That is, the ontology provides the context to facilitate resource location.

Once a file has been selected, semantically-related files can be located by pressing
the middle button, regardless of the folders where these files are physically located,
providing a resource-centric navigation. This facilitates location of neighbour resources,
but it may be cumbersome whenever browsing is required. In this case, a graph-based
RDF visualizer can be a better option (see [1] for an overview of RDF visualizers).

3 Conclusions

This work strives to lower the adoption barrier of the semantic desktop by providing
seamless tooling. To this end, we support the notion of “knowledge folder” as the under-
lying infrastructure, and the “semantic mouse” as the interactive device. Being editor-
independent, the mouse accounts for portability and maintainability to face the myriad
of formats and editors which characterizes current desktops. Similar to other areas of
computing, a balance is needed between generality (e.g. format-independence, editor-
independence, etc), and functionality (i.e. the semantic tooling available). seMouse il-
lustrates a semantic-lite approach where a compact set of functions are available to no
matter which editor within Windows.

References

1. John Gilbert and Mark H. Butler. Review of existing tools for working with schemas, meta-
data, and thesauri. Technical report, Hewlett Packard Laboratories, October 2003.

2. Aditya Kalyanpur, James Hendler, Bijan Parsia, and Jennifer Golbeck. SMORE - Semantic
Markup, Ontology, and RDF Editor. http://www.mindswap.org/papers/SMORE.pdf, 2004.

3. Marcelo Tallis. Semantic Word Processing for Content Authors. In Workshop Notes of Knowl-
edge Markup and Semantic Annotation Workshop (SEMANNOT 2003). Second International
Conference on Knowledge Capture (K-CAP 2003), October 2003.

