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Abstract. In this paper we present the results of a number of experi-
ments testing various methods to rank and sort data in the presence of
noise. We model different forms of noise which are intended to simulate
output from potentially unreliable sources such as estimated fitness func-
tions, physical sensors, or the results of a study with human subjects.
‘We conclude that while the optimal algorithm in any situation is depen-
dant on the expected noise pattern and the requirements of a specific
application, ground truth data can be obtained in most circumstances
with a predictable accuracy.

1 Introduction

Gathering information from the real world is inherently noisy. Whether a system
relies on sensor data prone to signal fluctuations, destructive sampling which may
degrade over time, network data which is constantly changing, or human input
which may be outright malicious, there is always some noise present. Artificially
intelligent (AI) systems face these challenges more than most, attempting to
mimic biological reasoning without the advantage of a biological brain to fill in
perceptual blanks.

1.1 Contribution

This work is part of an overall project to illicit correct rankings of items in the
presence of noise. We outline a number of potential noise patterns aiming to
simulate various real world scenarios. Using the sorting of arrays as a test bed,
we compare a number of common approaches to this problem in the presence of
different noise patterns.

While this contribution is not strictly focused on Al, it is core to many
subtopics in the area requiring ground truth data including reasoning systems,
genetic algorithms, human computer interaction, knowledge representation, opin-
ion mining, perceptually guided action, recommender systems and sentiment
analysis.



2 Related Work

Sorting an array of items is a fundamental task in computer science and many
approaches are used. However, introducing noise adds a number of challenges
more resembling a tournament ranking challenge whereby values become players
and comparisons become matches where the result is not certain.

A number of common tournament ranking algorithms exist such as the round
robin where each player plays every other player, the knockout tournament where
only winning players continue within the tournament, and the Swiss style tour-
nament [1]. A Swiss tournament! aims to efficiently determine the winner of a
tournament using the smallest possible number of matches at the expense of the
accuracy of the ranking mid-ranged players. The Swiss tournament is commonly
used today for chess and trading card game tournaments where all players in
the tournament play the same number of matches [5].

Braverman et al. [2] have studied the ordering of items in the presence of
noise. However, they take a theoretical approach to the problem, focusing on
a ‘noisy order’ also known as Mallow’s model, and noisy comparisons. In their
paper they present ‘polynomial time algorithms for solving both problems with
high probability’. While their work on noisy comparisons is related to the work
presented in this paper, they provide no empirical results. Furthermore, the
omission of implementation details prevented the comparison of their proposed
algorithms with the algorithms presented in this paper.

Considering a tournament as a directed graph, the minimum feedback arc set
(FAS) problem is a related challenge concerned with discovering the minimum
number of arcs required to be removed to obtain an acyclic graph. An acyclic
graph enables a full, distinct ranking of all nodes on the graph, or players in the
tournament. This problem is NP-complete [6]. Recent work by Braverman [2],
Kenyon-Mathieo and Schudy [7] and Wauthier [9] explores this area and propose
possible approximation approaches. However, the FAS problem focuses mainly
on a fair ranking after a large number of arcs have been created, which is not
always possible.

In many cases, we are limited in the number of samples made, such as in
psychological studies or with destructive sampling. Recent work by Breen et al.
[3] explores the notion of ranking subjective human preferences, an extremely
noisy input, with the minimum number of samples. In this case, samples are lim-
ited due to human fatigue. A graph based ranking algorithm is proposed which
aims to reduce the number of questions asked of the subject while addressing a
number of other methodological issues.

LA Swiss style tournament begins by randomly pairing competitors. After each
round, competitors are given a score — typically 3 for a win, 1 for a draw, 0 for a
loss — and paired again but only with competitors with the same, or similar score.
The tournament continues until a clear winner is decided. Assuming no draws, a clear
winner is decided in the same number of rounds as a knockout tournament, which is
the binary logarithm of the number of players rounded up. This reduces the number
of comparisons required to finish the tournament but does not produce a full ranking
of other players who have not won (or lost) every game.



3 Methods

Eight tournament ranking and sorting algorithms were tested using four noise
patterns. A control experiment was conducted without any noise present. The
noise patterns are described in detail in section 4.

Before the experiments were carried out, a tuning phase was carried out to
ensure each noise pattern introduced a similar level of noise to each execution of
an algorithm. The details of this tuning phase are outlined in section 3.2 below.

A set of 50 randomly ordered arrays of 500 unique integer elements were
generated. Each algorithm was executed with each noise pattern to sort all 50
arrays. Each algorithm was implemented with an abstract comparison operator
enabling noise to be introduced without altering the implementation of the algo-
rithm. Each algorithm was altered to store the number of times the comparison
operator was used while sorting an array.

After each array was sorted, it was compared to a correctly sorted array of
the same elements and an inaccuracy measure was calculated. Inaccuracy values
are normalized and scaled as described in section 3.4 below.

3.1 Noise Patterns

The work in this paper focuses on noisy comparisons. That is, for any ranking
or sorting algorithm, a comparison must be made between two elements. If this
comparison is not always guaranteed to return the same value given the same
two elements, it is said to be noisy. With this is mind, the following sections
describe the noise patterns used.

Control: The control pattern represents no noise. Every comparison produces
the correct result.

Percent Noise: This noise pattern introduces a random variance to the values
being compared. For any array of values and an input parameter of x percent,
each value may be varied by at maximum z percent of the range between the
highest and lowest values in the array. For example, for an array of 500 elements,
1 to 500, and a percent parameter of 15, any value being compared may vary
by plus or minus 15% of 500 (75). This has the effect of producing unreliable
comparisons for elements that are similar in value, and reliable comparisons for
elements that are very dissimilar in value. For example, the comparison 110 <
120 should typically be true. With Percent noise applied however, we may
actually observe the result of the comparison (110 + 75) < (120 + 75) which
could be 170 < 103, which is of course false. On the other hand, 30 < 400 will
always produce the correct result as the difference of the values is larger than the
sum of any potential noise. This noise pattern simulates the effects of reading a
signal from a sensor with a random voltage variance.



Flip Noise: This noise pattern represents the comparison operator producing
an incorrect result — regardless of the values being compared — with a specific
probability. It is similar to the previous pattern in that it introduces random
noise to the system. However, this pattern is not sensitive to the actual values
being compared, as Percent Noise would be. This noise pattern simulates a
human participant who may give the wrong answer to a question through error,
or a system where the answer is corrupted through transmission. This type of
noise pattern is similar to the ‘noisy comparisons’ used by Braverman et al. [2].

Increasing Noise: This noise pattern also represents the comparison oper-
ator producing an incorrect result with a certain probability, similar to Flip
Noise above. However, the probability of an incorrect result increases with each
comparison made. This simulates destructive sampling or, a human participant
becoming more fatigued over time, which will increase the probability of incor-
rect responses over time. Again, the noise in this pattern is not sensitive to the
actual values being compared in contrast to Percent Noise.

Tail Noise: This noise pattern, similar to Percent Noise, introduces a random
variation of the values being compared. However, in this implementation, the
variation of the values is dependant on how large those values are. The lowest
value will be subject to no noise, and the highest value will be subject to the
maximum level of noise, with noise levels distributed linearly across the values
in-between. This noise pattern simulates the output of a fitness function in a
genetic algorithm where highly fit individuals may have a far more consistent
performance versus less fit individuals. Similarly, within a sporting tournament,
highly ranked competitors who maintain a relatively steady performance between
matches versus lower ranked competitors who may have varying performance
between matches.

3.2 Tuning Noise

We estimate the noise in a system with the Noise Value function, the ratio of
false comparisons to true comparisons. A true comparison produces the result
we would expect in the absence of noise. We consider n(1) < n(2) = true to
be a true comparison, where the function n applies noise to the values 1 and
2. A false comparison produces a result contrary to what we would expect in
the absence of noise, and thus we consider n(1) < n(2) = false to be a false
comparison.

With this approach, the input parameters of each noise pattern were tuned
resulting in a similar Noise Value for each pattern.

3.3 Algorithms

The results below show the performance of 8 algorithms. Bubble sort (BBL),
Insertion sort (INS) and Quick sort (QCK) were chosen as standard sorting



algorithms!. Round robin (RBN) and Swiss tournament (SWS) were chosen
as two tournament ranking algorithms [1]. The graph based ranking algorithm
(Graph Sort) proposed by Breen et al. [3] was used with three tie breaking
strategies: Random tie breaking (GSR), highest rank tie breaking (GSH) and
lowest rank tie breaking (GSL). Details of the Graph Sort algorithm may be
found in the appendix. The algorithms selected were chosen to display a variety
of approaches and complexities. A summary of the algorithms used is shown in
Table 1.

Table 1. Tournament Ranking and Sorting Algorithms

Algorithm title Abbreviation Average Complexity
Graphsort - Random tie breaking GSR. nlog(n)

Graphsort - High tie breaking GSH nlog(n)

Graphsort - Low tie breaking GSL nlog(n)

Bubble Sort BBL n?

Insertion Sort INS n?

Quick Sort QCK nlog(n)

Swiss Tournament* SWS log(n)

Round Robin Tournament RBN n?

*The Swiss Tournament only achieves a partial ordering.

3.4 Inaccuracy Measure

We compare algorithms by an inaccuracy measure based on Spearman’s footrule
[4], a measure of the similarity of two arrays of the same elements. Spearman’s
footrule was selected as it was quite straightforward to implement, provided a
relatively good measure of accuracy and was not computationally expensive.
Additionally, Spearman’s footrule was selected over Kendall’'s Tau, a similar
ranking similarity metric, as it takes into consideration the actual distance be-
tween ranked elements. This is an important factor when we attempt to compare
algorithms with partially sorted elements.

The footrule is calculated as the sum of the absolute difference of position
between the elements of the two arrays. The footrule value, f, is calculated for
the output of an algorithm and a fully sorted array. This value is non-linear, as
demonstrated in Figure 1 and so requires some normalization to produce a linear
value and thus make fair comparisons. We modelled the increase in footrule as
random values are swapped in an array. A function is easily fitted to the average
footrule for 500 arrays which can then be used to estimate the number of swaps,
or the inaccuracy, a given footrule represents. This normalization function, solved

See [8], pages 106-109, 80-82 and 113-117 respectively



for number of swapped values, S, is

S = clogg(aif>

where a = 83761.92, b = 83754.69 and ¢ = 178.8318. Finally, the inaccuracy is
scaled to plot both the number of comparisons made and the inaccuracy on the
same graph.

104 Footrule (f) Vs. Swapped values

()
T
|

Footrule (f)
W
T
\

| | | | |
0 200 400 600 800 1,000

Number of swapped values

Fig. 1. Footrule increases non-linearly with random values swapped.

4 Results and Discussion

We now present the results of our experiments. We include some brief analysis of
each experiment within the relevant sections below in order to easily delineate the
various results for the convenience of the reader. Further discussion and analysis
of each algorithm is presented in Section 5 below. Figures 2 and 3 display the
average inaccuracy measure and the average number of comparisons made. Error
bars display the standard deviation.

4.1 Experiment 1: Control

The control experiment demonstrates the baseline average number of compar-
isons for each algorithm in Figure 2. We see RBN takes the most number of



Experiment 1: Control

5

-10°
I I I T T T T
3 |® Inaccuracy i
0 Comparisons
O
2 |- |
O
1 - |

u]

a

m]

°
ofF ¥ e e e e U 0O e
| | | |

| | | |
S R S

Ranking Algorithms

Fig. 2. Inaccuracy and comparisons for each ranking algorithm under normal condi-
tions. Inaccuracy here is the average normalized footrule value. Comparisons is the
average number of comparisons made between two elements in an array for each algo-
rithm over the course of a run.

comparisons, followed by BBL. GSH, GSL and INS perform similarly with the
high and low rank tie breaking strategies operating in a similar fashion to INS.
With the highest performance here we see GSR, QCK and SWS.

SWS produces a partial ordering, with a low number of comparisons as ex-
pected, resulting in the only inaccuracy above 0. The aim of this algorithm is
to identify the strongest competitor in a tournament in the minimum number
of matches, while allowing the other competitors to continue competing against
competitors of a similar quality to build experience. A side effect of this approach
is that the weakest competitors are also identified.

4.2 Experiment 2: Percent Noise

As shown in Figure 3, Experiment 2, in terms of the number of comparisons
needed to reach a partial ranking, RBN and BBL have a very poor performance.
A by-product of the large number of comparisons is that the partial ranking pro-
duced by both algorithms is much closer to the correct ranking. This is expected
as larger numbers of comparisons may reduce the effects of perturbing the data
according to a randomly distributed noise pattern.

The performance of the other algorithms is generally much better, with less
extreme variation. INS, GSL and GSH occupy the middle range with more com-
parisons and a larger footrule than the higher performing QCK, SWS and GSR.
In terms of the number of comparisons, GSR is capable of achieving a partial
ranking with the best performance. However, this is at the expense of accuracy
where QCK and SWS have the advantage.
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Fig. 3. Inaccuracy and comparisons for each ranking algorithm subjected to various
noise patterns. Inaccuracy here is the average normalized footrule value. Comparisons
is the average number of comparisons made between two elements in an array for each
algorithm over the course of a run.



4.3 Experiment 3: Flip Noise

The results of this experiment, shown in Experiment 3, Figure 3, are similar
to those generated using Percent Noise: RBN and BBL requiring the most
comparisons to produce relatively accurate partial rankings, and GSR, QCK
and SWS producing rankings with much fewer comparisons at the expense of
accuracy. This is perhaps unsurprising due to the similarities between the two
noise patterns. However, there are some variations that may be a result of the
lack of sensitivity to the actual values being compared.

QCK was relatively unaffected by the change in noise in terms of comparisons
made, but suffered greatly in terms of accuracy with an increase in footrule (f)
of 82.587% relative to experiment 2. This is easily justified as the divide and
conquer nature of quick sort would lead to large portions of the result being out
of place, even if these out of place portions were independently partially sorted.

BBL seems to also have suffered greatly in terms of accuracy with a 356.956%
increase in f relative to experiment 2. Again, this is because of BBL attempts
to bubble each element into place and one incorrect comparison — which can
now occur at any point, rather than close to the correct point in the previous
noise pattern — can result in an element being placed incorrectly. One incorrect
placement like this may then have a further influence on subsequent elements.

GSR actually sees an increase in performance here with the number of com-
parisons decreasing by 20.553% relative to Experiment 2. Interestingly, this in-
crease in performance does not come with a large decrease in accuracy, with f
increasing by only 6.067% relative to Experiment 2.

4.4 Experiment 4: Increasing Noise

The results of this experiment are displayed in Experiment 4, Figure 3.

BBL sees a large decrease in accuracy relative to Experiment 2 which is most
likely due to a similar effect seen with previous noise patterns, where one out of
place element may have knock-on effects for further elements.

RBN also sees a drastic decrease in accuracy. This decrease, together with
the decrease in accuracy we observe with BBL is likely exaggerated due to the
increase of noise over time. Both RBN and BBL require the largest number of
comparisons which will result in a much greater amount of noise being intro-
duced.

GSL, GSH and INS perform similarly with slightly lower numbers of com-
parisons and slightly decreased accuracy than Experiment 2.

SWS remains relatively unaffected with a slight increase of f by 15.851%
relative to Experiment 2. This reflects how the algorithm begins by pairing up
similarly ranked values, which should achieve a good partial sorting quickly
before the noise value increases resulting in values only slightly out of place.

GSR shows an increase of f by 28.026% relative to Experiment 2, but as
with previous experiments, this increase in accuracy requires an increase in the
number of comparisons by 226.774%. While the increase in comparisons may



seem rather large, it should be noted that this remains the lowest number of
comparisons of any algorithm in this experiment.

Finally, QCK shows the best accuracy and the third lowest number of com-
parisons — greater than GSR and SWS by 120.733% and 110.036% respectively.
Compared to experiment 2, QKC also shows a marked decrease in inaccuracy.

4.5 Experiment 5: Tail Noise

The results of this experiment are displayed in Experiment 5, Figure 3.

BBL handles this noise pattern relatively well compared to other noise pat-
terns, performing similarly to the control experiment with a low inaccuracy but
high number of comparisons.

RBN also achieves a low inaccuracy, but again is the worst algorithm with
the greatest number of comparisons.

INS, GSH and GSL once again perform similarly, more accurately than Ex-
periment 2 — 29.208%, 29.579%, 29.955% respectively — but with significantly
more comparisons — 149.207%, 137.479%, 141.228% respectively.

SWS continues to perform well in terms of accuracy but is outperformed on
number of comparisons by both QCK and GSR. QCK, performing exceptionally
well here with a very strong accuracy and very low number of comparisons.

GSR achieves the lowest number of comparisons of all algorithms but with
the worst accuracy.

5 Further Discussion

For psychological studies, where human fatigue is a major issue or where destruc-
tive sampling techniques are used, the absolute minimum number of samples and
a relatively high level of inaccuracy is acceptable. In this scenario, GSR may be
preferable.

For applications where the number of samples taken, or comparisons made
are not a limiting factor, taking as many samples as possible using an approach
like RBN is preferable.

In a more general scenario where the noise pattern is not predictable or is
unknown and a higher accuracy is required, SWS or QCK provide a very pre-
dictable accuracy performance with a relatively low number of samples required.

5.1 Algorithm Performance

We now discuss the performance of each algorithm under various noise patterns.
In the interest of clarity and to avoid repetition, some similarly performing al-
gorithms have been grouped together.



GSR. GSR performs well across all noise patterns with a low number of com-
parisons. Indeed GSR actually achieves a lower number of comparisons in the
presence of noise than in the control experiment. With the exception of the con-
trol, GSR achieves the lowest number of comparisons of any algorithm for each
noise pattern. GSR also achieves higher accuracy with some noise patterns, no-
tably handling Increasing Noise quite well. Considering the intended purpose
of this noise pattern is to mimic human fatigue and the intended purpose of GSR
is to handle this particular circumstance, this is a positive result.

GSH, GSL and INS. GSH and GSL perform similarly to each other across
all experiments, which suggests that the impact of breaking higher ties versus
breaking lower ties is negligible. GSH and GSL also perform strikingly similarly
to INS, which may suggest that these algorithms may be slight variations of
a generalized sorting pattern. GSH and GSL also perform worse than GSR in
every experiment, both in terms of the number of comparisons and accuracy,
with the exception of Tail Noise, where GSH, GSL and INS outperform GSR
in accuracy.

BBL and RBN. BBL and RBN consistently display the largest number of
comparisons. This is expected due to the average case complexity of both algo-
rithms. While the performance of these algorithms was perhaps predictable and
unnecessary to verify, they do demonstrate a general inverse correlation between
the number of comparisons and accuracy achieved. It is plain to see that with
the exception of Increasing Noise, a higher accuracy can be obtained using
a less efficient algorithm. As mentioned above, this finding may have particular
utility in specific circumstances; where a noisy ranking environment is present,
making a comparison does not increase the noise, a large number of comparisons
is not a drawback and higher accuracy is necessary.

SWS. SWS performs incredibly consistently across all noise patterns including
the control experiment. This consistency is certainly a major advantage, together
with the accuracy it achieves with a low, and predictable number of comparisons.
However, in contrast to other algorithms which produce a more homogeneous
accuracy distribution, SWS ranks elements with less accuracy towards the center
of the array than to either extreme. We suspect the elements ranked closer to
the center of the array may be ranked with far less accuracy than the inaccuracy
measure used in our results shows. In this respect, SWS cannot be recommended
for any application where a homogeneous accuracy is required.

QCK. QCK would perhaps be the best choice for experiments 1, 2, 4, and 5
if there was less weight on the number of comparisons made. This algorithm
achieves very good accuracy across all noise patterns, with a good number of
comparisons for all noise patterns. QCK performs worst in the presence of Flip
Noise with a relatively high number of comparisons combined with a lower
accuracy than in other experiments.



Future Work We intend to investigate and present the effect of varied levels
of noise and how algorithms perform as noise is varied.

SWS, GSH and GSL are particularly suited to accurately ranking a subset of
values. Their performance may improve when this is specifically measured, and
thus we also intend to investigate this.

6 Conclusion

QCK and SWS appear to perform quite well under most circumstances, and may
be recommended in circumstances where accuracy is favoured over comparisons
made, with SWS particularly suited where consistency is desirable. However
they cannot be assumed to be the ideal solution in every scenario. Without any
consideration for the number of comparisons, RBN is the ideal solution. Alter-
natively, in a scenario where reducing the number of comparisons is particularly
important, GSR is favourable. The optimal algorithm in any situation will de-
pend on the expected noise pattern, together with the specific application.

The accuracy and number of comparison measurements display a rather small
standard deviation indicating that the performance of an algorithm under a
particular noise pattern is quite predictable. In a scenario where the noise pattern
is somewhat predictable, such as human responses in recommender systems or
psychological studies, these results may be useful as an indication of the expected
relative accuracy of a particular algorithm.
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Appendix: Graph Sort Algorithm

The Graph Sort algorithm, proposed by Breen et al. [3] is designed to minimize
the number of comparisons required to find a complete ranking based upon the
use of a directed graph. To sort an array, each element is represented as a node
on a graph. Beginning with a fully unconnected graph, all nodes are ranked
equally at 0, directed edges are added between nodes based on the tie breaking
approach. In this paper we explore three tie breaking approaches: Random tie
breaking (GSR), Highest rank tie breaking (GSH) and Lowest rank tie breaking
(GSL).

After each edge is added to the graph, the rank of each node is recalculated.
Given the number of forward reachable nodes from any node n as 6/, the rank
R of any node is defined as R(n) = 6 + 1.

This process continues until no ties remain, resulting in a complete ranking.

Table 2. Common Experiment Parameters

Parameter Value
Array size 500
Arrays for each noise pattern 50
Tuned to noise value 0.9

Table 3. Noise Pattern Parameters

Pattern Description Parameters (values)

Control No noise. Comparisons and values None
are always correct.

Percent noise ~ Values vary by a percentage of the Value Range (0-500),
total range of values. Percent (15)

Flip noise Comparison result is inverted with Probability (0.105)
a predefined probability.

Increasing noise Flip noise with an increase in Init. Probability (0),
probability of an incorrect result  Increment (0.0000045)
each time a comparison is made.

Tail noise Percent noise with an increase of Value Range (0-500),
noise for larger values. Percent Range(0-120)




