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Abstract. Accurate classification of astronomical objects currently relies on 

spectroscopic data. Acquiring this data is time-consuming and expensive com-

pared to photometric data. Hence, improving the accuracy of photometric classi-

fication could lead to far better coverage and faster classification pipelines. This 

paper investigates the benefit of using unsupervised feature-extraction from 

multi-wavelength image data for photometric classification of stars, galaxies and 

QSOs. An unsupervised Deep Belief Network is used, giving the model a higher 

level of interpretability thanks to its generative nature and layer-wise training. A 

Random Forest classifier is used to measure the contribution of the novel features 

compared to a set of more traditional baseline features. 

1 Introduction 

With the vast amounts of data gathered by today’s astronomical surveys, it is no 

longer feasible to inspect the observations manually, making the role of Machine Learn-

ing (ML) in the field of Astronomy highly relevant at present [1,2]. However, incorpo-

rating this approach is an ongoing effort which Djorgovski et al. [3] describe as a 

change of culture in the field. Borne [4] also discusses this, and concludes that it is 

essential that the ML techniques be such that they are interpretable enough to allow for 

human astronomers to work in collaboration with them on the analysis. This would also 

allow for verification of their quality and would contribute more to the understanding 

of the underlying models of our universe than a black-box technique could do. 

This paper takes these concerns into account while investigating a novel approach 

to the feature generation problem in the photometric classification of stars, galaxies and 

quasi-stellar objects (QSOs); the latter term referring to the highly active galactic nuclei 

believed to be caused by supermassive black holes [5]. The data source used is the 

Sloan Digital Sky Survey (SDSS) Data Release 12 (DR12) – a recent ground-based 

astronomical survey covering roughly a third of the sky [6]. 

The approach used in this paper is an unsupervised ML technique from the Deep 

Learning field called Deep Belief Networks (DBN) which has some interesting quali-

ties when it comes to interpretability [7]. DBNs have been used successfully in Com-

puter Vision tasks with unlabeled image data [8], which makes it a good candidate con-

sidering the vast amounts of this type of data available from recent surveys such as the 

SDSS. 



The purpose of this paper is to provide an evaluation of the approach presented here. 

Conclusions drawn from this can be used either directly when designing the methodol-

ogy for future classification tasks, or as a basis for future research in a similar direction. 

It is outside the scope of this paper to investigate different classification algorithms 

in which the unsupervised features could be used, so this is left as a recommendation 

for future work. Further, while some exploration into different hyper-parameter settings 

was carried out during the development of the unsupervised model, extensive tuning 

was not a prioritized task, leaving some room for improvement on this aspect. 

2 Photometric Classification 

The golden record for object class labels in Astronomy is obtained by inspecting the 

object’s spectra, i.e. the light emitted as a function of wavelength. From this, it is pos-

sible to analyze the physical qualities of the object that are highly relevant when deter-

mining its class [9]. A problem with using these spectroscopic measurements is that 

they are far more time-consuming to obtain than photometric measurements such as 

images and the parameters derived thereof [3]. In SDSS DR12, the number of objects 

with spectroscopic observations are roughly 1% of those with photometric observations 

[6]. Considering this, accurate automated classification using photometric data alone 

would increase both the coverage and speed of the classification task [1], [10]. 

While spectroscopic classification defines the golden record, photometric classifica-

tion is an active area of research with promising results. The SDSS dataset in particular 

has become something of a standard for this type of research thanks to its publicly 

available dataset consisting of photometric observations of around 470 million objects, 

and spectroscopic measurements for around 5.3 million of these in SDSS DR12 [6], 

[11]. Current state-of-the-art on the three-way classification of stars, galaxies and QSOs 

in the SDSS dataset has reached rather high levels of accuracy, but still suffers from 

some problems, mainly with regards to the feature generation process and the interpret-

ability of the models. 

2.1 Current State-of-the-Art 

Brescia et al. [11] used a 2-layer Multi-Layer Perceptron with Quasi Newton Algo-

rithm to simultaneously classify stars, galaxies and QSOs in the SDSS dataset, using 

only photometric features, with the spectroscopic class labels as the true labels. Their 

best result gave a precision of 93.82% for stars, 93.49% for galaxies and 86.90% for 

QSOs, with recall values of 86.40% for stars, 97.02% for galaxies and 90.49% for 

QSOs. For this model, the input features were the magnitude values that SDSS derives 

from the image data, representing the apparent strength of the source as seen from our 

planet. One problem with this feature set is that the magnitude values are dependent on 

the distance to the source, such that a closer source will have higher magnitude values 

than an identical source that is further away. While there is some correlation between 

the distance to an object and its class label due to cosmological reasons, the magnitude 

values themselves do not represent an accurate definition of the physical attributes of 



the source. However, the difference in magnitudes from multiple wavelength bands of 

the same object does carry relevant information, essentially forming a very low-resolu-

tion spectra of the object [3], [12]. As such, it is possible that the classifier in [11] 

managed to find such correlations between differences in the magnitudes. There is also 

the risk, though, that it potentially overfits to irrelevant aspects of the individual mag-

nitudes that might be correlated to the instrument quality or the target selection pipeline 

for the spectroscopic observations. This is a situation where a higher interpretability of 

the model would have been useful to investigate what the model based its decisions on. 

In a separate experiment from the same paper, instead of using all the magnitude 

values directly, only one of them was used as-is, while the rest were used to generate a 

set of features from the differences between them [11]. These differences, referred to 

as color values, are commonly used in photometric classification tasks [13]. They are 

referred to by two-letter names based on the wavelength bands they compare, such as 

B-V or u-g; which wavelength bands are available depend on the photometric system 

that is used [12]. These color values should not be confused with the single-color terms 

used to describe subclasses of stars (e.g. red giants, white dwarves). 

In this second experiment, 10 color values were used along with the magnitude value 

from the u-band and r-band respectively in two different models. The results from this 

experiment were slightly lower: for stars the precisions were 90.21% and 89.93% with 

recalls of 82.57% and 82.27%, for galaxies the precisions were 88.00% and 88.03% 

with recalls of 92.69% and 92.64%, and for QSOs the precisions were 85.56% and 

85.60% with recall values of 87.83% and 87.77% [11]. It is difficult to say whether the 

results from the first experiment were higher due to the model’s ability to find more 

complex correlations in the magnitude differences, or whether it was due to overfitting 

on aspects of the data that might not generalize to the full photometric population. 

It should be mentioned that higher accuracies have been reported for specific classes 

under specific circumstances. In [14], QSO point-sources were separated from other 

point-sources to a precision of 96.96% and a recall of 99.01% for the QSO class. How-

ever, the sample selection resulted in a proportion of QSOs of 86.14% in contrast to 

12.88% in the full dataset. While this might be useful for certain scenarios, the focus of 

the present work is on developing a model that generalizes well to all classes. 

2.2 Gaps 

Accurate object type classification still relies on spectroscopic measurements which 

are far less abundant than image data and its derived photometric parameters, but pho-

tometric classification results are reaching fairly high accuracies. Current state-of-the-

art results have been obtained through the use of advanced ML algorithms. However, 

the interpretability of these techniques is often lacking, making it hard to say what they 

base their decisions on. For the methods to become more useful to astronomers, this 

needs to be addressed. 

Another problem is the way features are derived from the original measurements. 

Often, this is done by handcrafted rules, increasing the risk of introducing a human bias. 

In the SDSS photometric pipeline, magnitude values are calculated based on assump-

tions about the nature of the object they measure, without actually knowing the nature 



of that source; because of this, multiple values are derived for the same parameter, 

leaving it up to individual researchers which ones to use [15]. Coughlin et al. [16] argue 

for the use of methods that treat all sources in the same way, so that results can be 

compared more easily and biases be more readily quantified. Since the photometric 

parameters in SDSS are derived from the image data, using that data directly, in the 

same way for all objects, might be a step in the right direction. 

Further, there might be useful information in the image data that is not captured by 

the parameters from the current pipelines. Support for this has been demonstrated on 

the task of galaxy morphology classification in [17] and [18]. While [17] used a novel 

set of handcrafted rules as input features for a Multi-Layer Perceptron, [18] used a Con-

volutional Neural Network where the algorithm decides which details are relevant in 

describing the images, potentially reducing the human bias of the model. Additionally, 

thanks to the deep layer-wise training of the model on image data, they were able to 

visualize what was learned by the model, thus making it more interpretable. These qual-

ities would be beneficial to the classification task in this paper as well, and their results 

lend some support to the approach of using unsupervised feature-extraction from astro-

nomical image data, which is an approach that has not been well-explored when it 

comes to photometric classification of stars, galaxies and QSOs. 

2.3 Deep Learning as a Potential Solution 

Deep Learning is an area of ML that covers the use of multi-layered non-linear mod-

els [8]. It builds on previous research into Neural Networks which is a technique in-

spired by our understanding of the biological learning process in humans and other 

animals. The breakthrough that led to a surge of interest into Neural Networks in the 

early 2000s came from a combination of the rapid increase in processing power at a 

lower price scale, along with the work of Hinton, Osindero & Ten [7] who proposed a 

more efficient way of training Deep Neural Networks than the previous standard of 

using backpropagation [8]. Their approach was to pre-train a network through an unsu-

pervised approach that made it possible to leverage large amounts of unlabeled data – 

a trait that is highly relevant in the Astronomy domain. The network was trained layer-

by-layer so that increasingly sophisticated features could be found at each level. This 

not only improved the final result and the training speed – it also made the model more 

interpretable since the features learned in each layer could be visualized separately. 

Their motivation for using such an approach was that it should be possible to find a 

clearer link between what causes the image (i.e. the actual object being imaged) and its 

class label than there would be between individual pixel values and the class label of 

the object [19]; in practice, such a model learns the underlying features that cause the 

pixel values to take on certain distributions, which agrees well with the intention of the 

astronomical classification task. 

To achieve the layer-wise training described above, a deep model was constructed 

by stacking a set of two-layer Restricted Boltzmann Machines (RBMs), each trained in 

isolation starting with the one closest to the input layer [7]. Each RBM is a network 

where all the units of one layer are connected to all the units of the next, with no con-

nections between units within the same layer. The weights are symmetrically tied in 



both directions: in a two-layer RBM, the weight matrix from the visible (input) layer to 

the hidden layer is the transpose of the weight matrix from the hidden layer to the visi-

ble. In addition to the weights, the two layers have their own set of bias units corre-

sponding to the connected units of that layer. Training is carried out by using a learning 

technique called Contrastive Divergence (CD) which was introduced in [20] as an effi-

cient approximation of maximum likelihood learning. As a final step, the weights of 

the RBMs can be unfolded into a single network where the symmetrical ties are 

dropped; this network can then be fine-tuned through a contrastive version of the wake-

sleep algorithm that was introduced in [21]. This type of deep model is referred to in 

the literature as a DBN; however, the term is used somewhat ambiguously as it some-

times implies that the network includes a supervised softmax layer on top of the stack 

of RBMs, while at other times it refers to the fully unsupervised version, and yet other 

times it is used for a Multi-Layer Perceptron that has been pre-trained by CD and then 

fine-tuned by traditional backpropagation [8]. In this work, DBN refers to an unsuper-

vised model trained by CD and fine-tuned in an unsupervised manner through the con-

trastive version of the wake-sleep algorithm. 

2.4 Suitability of Using a DBN for Photometric Feature-Extraction 

Feature-extraction by a DBN provides an unsupervised method that can be used di-

rectly on the image data. It is a data-driven method that avoids the use of handcrafted 

rules. Hence, the extracted features are chosen by the model to best represent the actual 

data, avoiding the human bias of handcrafted rules based on the researcher’s assump-

tions about the data. Since it uses unsupervised training, it can potentially leverage the 

vast amounts of unlabeled data available from modern Astronomy surveys. Further, 

DBN is a generative model, meaning that what it learns is actually to generate new data 

samples from its understanding of the training data; this can be used to visualize what 

type of data the model has learnt to recognize. Additionally, thanks to its layer-wise 

training, it provides a straightforward way to visualize what sort of structures each unit 

is sensitive to in the images. These points address the gaps discussed here, while still 

providing a technique that has been shown capable of handling complex ML tasks. 

3 Methodology 

3.1 Experiment Design 

The classification task was to use photometric data to classify each astronomical 

object as either a star, galaxy or QSO according to its spectroscopic class label. To 

measure the advantage of using the features extracted by the unsupervised DBN, an 

experiment was designed where the result of two models could be compared. The base-

line model uses the 10 color values introduced in section 2, which are easily derived 

from the existing dataset; this gives a baseline result which can already be obtained 

with little effort. The DBN model uses the novel features, in addition to the baseline 

features, to measure what added benefit they might provide. Both models use a Random 



Forest (RF) classifier to assign the class labels. For the baseline model, this is the entire 

model; for the DBN model, the RF classifier is the final stage where the DBN features 

and the baseline features are used as inputs. 

Each sample of input data for the DBN consisted of the pixel values from all 5 wave-

length bands of one object with a resolution of 20 by 20 pixels each, making each sam-

ple 2000 pixels in total. Some preprocessing was necessary to ensure the images were 

cropped, centered and resized to the same dimensions. After this, the images were nor-

malized in each wavelength band individually since the difference in signal strength 

between the bands is already covered by the color features; if a future experiment were 

to use the DBN features alone, the author recommends calibrating the images according 

to the information given in [22]. 

3.2 DBN Design 

The DBN was constructed from two RBMs: the first with 2000 visible and 1000 

hidden units, and the second with 1000 visible and 100 hidden units. The output from 

the DBN is thus 100 features, referred to here as the DBN features. Each layer was 

trained greedily in isolation, after which the symmetry of the generative and recognition 

weights were dropped and the RBMs were unfolded into a single network; the structure 

of these networks are shown in Fig. 1. The resulting network was globally fine-tuned 

through the contrastive wake-sleep algorithm where the generative weights were 

trained separately from the recognition weights [7], [21]. 

 

Fig. 1. The network used for unsupervised feature-extraction, with the RBM layers on the left 

and the combined DBN network on the right 

3.3 Sample 

The dataset for the experiments was acquired from the SDSS dataset by random 

sampling stratified on the spectroscopic class labels. Table 1 shows the class label pro-

portions and sizes of the full set of spectroscopic observations (which can contain du-

plicates and failed observations), the clean population (where objects must have valid 



spectroscopic and photometric observations and not contain duplicates) and the actual 

sample. The criteria for the clean sample was based on SDSS flags only; no extra in-

spection was carried out on the images themselves. Specifically, only the primary pho-

tometric and spectroscopic observations were used. Spectroscopic observations were 

not allowed to have zWarning flags of UNPLUGGED, BAD_TARGET or NODATA. 

Photometric observations were required to have the PHOTOMETRIC flag set for its 

calibStatus in all wavelength bands, in addition to having the clean flag set. More de-

tails on the meaning of these flags can be found on the SDSS DR12 website1 and the 

CasJobs2 site where most of the numerical data can be downloaded from. The images 

were obtained separately through the DR12 Science Archive Server3. 

Table 1. Spectroscopic class proportions in the sample and the relevant populations 

 

 

 

Sample 

n = 10,000 

Clean 

population 

n = 3,140,923 

Full 

population 

n = 3,537,411 

STAR 23.97% 23.97 % 22.83 % 

GALAXY 62.10% 62.10 % 64.29 % 

QSO 13.93% 13.93 % 12.88 % 

 

Due to resource limitations, the sample size is quite small compared to the total da-

taset, but as the experiments are meant to test the approach rather than draw conclusions 

about the class labels of the total dataset, this limitation should not be of great concern. 

The sample was split into training and test sets by first splitting the dataset in half 

for use in the DBN and RF training each. The DBN data was split into 70% training 

and 30% cross-validation of the cost monitoring; the RF data was split into 40% for 

training, 30% for cross-validation of the number of trees for the RF and some hyper-

parameter tuning for the DBN, with 30% reserved for the final test results. 

3.4 Evaluation 

To assess the model’s performance on the individual classes, the individual F1 scores 

were used. For the overall performance, the macro-averaged F1 score was used, calcu-

lated to prefer a model that generalizes well to all classes [23]. This was used since one 

of the strengths of unsupervised learning is that it can leverage unlabeled data, but by 

doing so, there’s a risk of biasing the model towards data with a more common profile. 

The final training and testing of the models was performed 100 times with different 

random number generator seeds to ensure that any differences between the models were 

not due to chance. The difference in means was tested for statistical significance with 

a one-tailed two-sample independent t-test in PSPP with a 95% confidence interval and 

a p-value cut-off of .05. 

                                                           
1  http://www.sdss.org/dr12/ 
2  http://cas.sdss.org/dr12/en/home.aspx 
3  http://data.sdss3.org/ 



3.5 Limitations 

Since the absolute true labels of distant astronomical objects are unknown, the 

golden record will inevitably be an approximation based on current theories [3]. For 

this paper, the SDSS spectroscopic class labels were used, so any biases in the SDSS 

spectroscopic pipeline and target selection criteria are inherited here. 

The strongest human bias of this work was the image preprocessing which unfortu-

nately could not be avoided. Attempts have been made to keep this to a minimum by 

using threshold values relative to the measurements in each individual image. 

4 Results 

The DBN model performed better than the baseline model both overall and on each 

of the three classes. The differences in means were statistically significant (p < .001) 

when tested in a one-tailed independent two-sample t-test in PSPP with a confidence 

interval of 95% and no assumption of equal variance. Table 2 shows the results along 

with the differences in means. The relative performance increase when adding the novel 

features is also given, calculated by taking the absolute performance increase divided 

by the means from the baseline model. 

Table 2. Results from the baseline model and DBN model, the absolute difference between them, 

and the relative improvment of the DBN model compared to the baseline model 

 baseline 

model 

DBN 

model 

Absolute 

increase 

Relative 

increase 

Macro-averaged F1 score 0.8321 0.8682 0.0361 4.35% 

F1 score, STAR 0.8037 0.8664 0.0627 7.81% 

F1 score, GALAXY 0.9376 0.9582 0.0206 2.20% 

F1 score, QSO 0.7549 0.7801 0.0252 3.32% 

5 Discussion 

The results confirm the usefulness of unsupervised feature-extraction from image 

data in photometric classification of stars, galaxies and QSOs. The model generalizes 

fairly well to the different classes, but could potentially be improved on this aspect by 

training the classifier on a weighted sample to counter the class-imbalance. 

Comparing to current state-of-the-art, the results reported in [11] can be converted 

into the same metrics used for this work, giving a macro-averaged F1 score of 0.9135, 

with the F1 score for stars at 0.8996, galaxies at 0.9522 and QSOs at 0.8866. The DBN 

model performs slightly better on the galaxy class but is otherwise below the state-of-

the-art results, with mainly the QSO class lagging behind in performance. This leaves 

room for improvement, possibly by combining the classifier used in [11] and the novel 

features presented in this work. 



For the interpretability of the model, however, a simpler classifier makes it possible 

to not only understand the extracted features but also how they were used in the classi-

fication task. This was done for the present work by examining the feature contribution 

values obtained from the RF classifier, averaged over the 100 training runs. The 10 

color features were the top 10 contributors, while the total contribution of the 100 DBN 

features added up to 28.43%. A visualization of the top 10 DBN features is shown in 

Fig. 2 where brighter areas represent a preference for the presence of signal, and darker 

areas represent the preference of an absence of signal. Since the images are normalized, 

they do not show where the zero-point of the weights are, but the contrast shows the 

type of shapes the model has learned to recognize. This visualization technique is pos-

sible regardless of the classifier, but the RF classifier can help by measuring their con-

tributions. 

 

Fig. 2. Normalized visualizations of the top 10 contributing DBN features 

Another way to provide some insight into what the model learned is by generating 

samples from the joint distribution learned by the model [7]. Fig. 3 shows some of the 

actual data samples after the image preprocessing on the left, with samples generated 

from the model on the right-hand side, in both cases taken from different wavelength 

bands and different object types. The samples on either side are unrelated to each other 

and to the other samples in the same rows and columns. 

 

Fig. 3. Actual data samples after image preprocessing (left) and samples generated from the 

model’s joint distribution (right). Individual images are 20x20 pixels and are taken from different 

wavelength bands and classes. 

6 Conclusions 

6.1 Contributions 

The main contribution of this work is the finding that unsupervised feature-extrac-

tion from image data can provide a measurable advantage for photometric classification 

of stars, galaxies and QSOs. The approach makes it possible to leverage the large 



amounts of unlabeled image data captured by modern Astronomy surveys, and it ad-

dresses the concern in the field regarding the interpretability of ML models. Addition-

ally, thanks to the unsupervised training, the DBN features could be re-used even if the 

golden record for the class labels was expanded or re-evaluated. 

As a side-product of this work, scalable implementations of the RBM and DBN al-

gorithms have been constructed for running the experiments. These implementations 

are not tied to the task presented in this paper but can be applied to any domain with 

high-dimensionality (labeled or unlabeled) data. The source code has been made avail-

able online as free software under the GPLv3 license.4 

6.2 Future Work 

The approach presented in this paper could be used directly in future research with 

relevant classification objectives. The weakness in the QSO class could potentially be 

addressed by training the RF classifier on a weighted sample, or by using the DBN 

features in a more complex classifier such as the one from [11] at the expense of some 

of the model’s interpretability. 

A more specific recommendation regarding the quality of the DBN features would 

be to train the DBN with a sparsity target; sparser features take on more specific roles 

which improves their interpretability [24]. Potentially, this could also reduce the com-

plexity of the DBN’s learning, especially in the second layer and beyond where the 

features from previous layers would provide clearer building blocks. 

A limitation to what can be concluded from this paper, which could be addressed by 

future research, is that it is not clear whether the image data from all five wavelength 

bands contributed to the results. More insight into this aspect could be provided by 

comparing these results to a model using only images from the wavelength band with 

the highest signal-to-noise ratio. 

Finally, and perhaps the most interesting direction, would be for future work to in-

vestigate the usefulness of the DBN features for Transfer Learning. Previous work by 

[25] has shown that unsupervised feature-extraction can provide useful intermediate 

features for different classification tasks within the same domain. If the DBN features 

were to show promising results in this area, then building a database of such general-

izable features could provide the Astronomy community with a set of ready-to-use 

lower-dimensionality features that would be more accessible than the full image data. 
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