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ABSTRACT 
The emergence of malicious codes that attack Wireless Sensor 

Networks (WSN) made it necessary to direct research attention 

to security. These attacks arising from worms pose devastating 

threats to networks which can lead to substantial losses or 

damages. However, recent models developed for the purpose of 

understanding worm transmission patterns and ensuring its 

containment did not account for the effect of uniform random 

deployment of sensor nodes on the Exposed and the Vaccinated 

compartments. Therefore, in this paper we present a modified 

Susceptible–Exposed–Infectious–Recovered–Susceptible with 

Vaccination (SEIRS-V) model for worm propagation dynamics 

in sensor networks. Our model applies the expression for 

uniform distribution deployment of sensor nodes so as to study 

the effect of distribution density and transmission range on the 

characterized compartments. Furthermore, we presented 

solutions for the equilibrium points, the reproduction number 

and proof of stability. Finally, we employed numerical methods 

to solve and simulate with real values the developed system of 

differential equations. 
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1. INTRODUCTION  
In recent times, Wireless Sensor Networks (WSNs) has enjoyed 

considerable use in civilian applications for precision farming 

[17] and the provision of smart and quality healthcare. In the 

military, WSNs are used to monitor rebel activities and to detect 

enemy movements etc. It consists of large number of 

communicating devices which are randomly deployed in 

unreachable territories without an engineered or predetermined 

position for the nodes [9], [14]. These territories are basically 

unfriendly and unguarded. 

 

The sensor nodes are distributed in a sensor field where they are 

wirelessly connected to the sink. Although they have minimal 

battery capacity they are able to monitor and collect data about a 

given area. The data and information can be territorial 

parameters like pressure, position/condition of objects/humans, 

humidity, temperature etc. The collected data and information 

are sent back to the local sink through transmission between 

neighboring nodes. This transmission is basically done in a 

“multihop infrastructureless” manner. Subsequently, analyses 

are performed on the collated data accessed by a remote user 

through the internet for suitable decision making.  

 

The constrained nature of sensor resources that gives rise to frail 

protective potential makes them suitable prey for self-replicating 

malevolent codes (such as worms) that spread without human 

involvement. In addition, these worms often tamper with the 

confidentiality, integrity and availability measures of 

neighboring sensor nodes due to its distributed nature.  

 

With the proliferation of the use of network technologies, 

increasing efforts have been focused on developing appropriate 

cyber protection structure in order to secure both stationary and 

moving information. Wireless Sensor Network research believes 

that achieving this objective is overly expedient. As a result, 

several continuous (and discrete) equation-based models that 

characterize, investigate and aid better comprehension of the 

behavioral tendencies of worm variants have been developed. 

Predictions of worm behavior are largely dependent on the 

presuppositions of the model characterization and analysis.  
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2. RELATED WORKS 
It is unarguably true that propagation of malicious agents in 

cyberspace is similar to the spread of epidemic in the biological 

world. Therefore, modeling and analysis enhance optimized 

containment by providing better understanding of the factors 

that aid faster propagation of malicious codes in networks. The 

Susceptible-Infectious-Recovered (SIR) model by [5], [4] and 

[6] initiated the journey into developing mathematical models 

for worm/virus propagation. Building on the SIR model, other 

extensions such as Susceptible-Exposed-Infectious-Recovered 

(SIER) [13], [12], Susceptible-Exposed-Infectious-Vaccinated 

(SIEV) [11], Susceptible-Exposed-Infectious–Recovered-

Vaccinated (SEIR-V) [9] etc., were developed to address several 

concerns arising in a real world network environment.  

 

In this paper we modify the Susceptible–Exposed–Infectious–

Recovered–Susceptible with a Vaccination compartment 

(SEIRS-V) epidemic model of [9] by applying [15] expression 

for uniform random distribution of sensor nodes with the aim of 

investigating the effect of both distribution density (σ) and 

transmission range (  
 ) on the characterized compartments. We 

discovered that though [15] represented distribution density and 

transmission range their SIR model did not include analyses for 

the Exposed and the Vaccinated compartments. On the other 

hand, though [9] included these two compartments their 

analyses did not involve distribution density and transmission 

range. Wang and Yang [16] also applied Tang and Mark’s 

formulation but their model used the Susceptible-Infectious (SI) 

compartments for their analyses; and didn’t discuss the Exposed 

and Vaccinated compartments. Considering the argument by [3] 

that standard incidence “presents a more reasonable and 

practical scenario of contact than the simple mass action 

incidence”, we would modify the above model using the former.  

 

In epidemiology, the Exposed class contains nodes that are 

infected but not infectious. These nodes which are in a latent 

phase possess different infectivity rate when compared to the 

Infectious nodes. Common symptom for nodes in this latent 

stage is slow data transmission speed [9]. On the hand, 

vaccination (or immunization) is a known countermeasure in 

epidemiology. It is aimed at fortifying a fraction of the total 

sensor node population prior to the outset of an epidemic. This 

study is necessary since there is a strong likelihood that sensor 

nodes can exist in the latent stage and that network managers 

can employ vaccination strategies to ensure security. In addition, 

the analyses of distribution density and transmission range using 

worm models can positively impact sensor deployment activities 

for institutions. 

 

3. METHODOLOGY  
In this study, we basically perform modeling and simulation. 

Specifically, we employ a widely applied method for 

investigating network epidemic [10], [9] and [11] etc. This 

method is called modeling and analysis of dynamical systems. 

Here, the WSN is treated like a dynamical system and 

equilibrium positions are studied. The methodology starts with; 

a. model formulation (and optionally drawing the schematic 

diagram); b. finding the equilibrium states (for the worm-free 

and the endemic states); and c. deriving the Reproduction 

number. Subsequent stages include; d. proof of stability and e. 

simulations experiments using software such as MatLab, Maple 

etc.  

 

During model formulation, the analyst presents the equations 

that represent a real world phenomenon (in this case worm 

propagation in WSNs). Some authors also present a conceptual 

(or schematic) diagram at this point. Next, the analyst will 

derive the equilibrium points by equating the model (or system 

of differential equation) to zero.  The Reproduction number is 

then derived to establish a threshold for disease/infection 

extinction in the network. Furthermore, stability analyses (using 

several renowned methods in literature) and simulation 

experiments are performed. The simulations experiments are 

more like sensitivity analyses. They are done by first solving the 

proposed model using a numerical method and applying real 

values for the simulation. Depending on the modeler’s intention 

the method can take different turns for analyses. But stages such 

as model formulation and simulation experiments are 

significantly part of this methodology.   
 

3.1  The Modified SEIRS-V Model 
We characterize worm attack in wireless sensor network using 

the Susceptible–Exposed–Infectious–Recovered–Susceptible 

with a Vaccination compartment (SEIRS-V). Our assumptions 

include addition of nodes in the network and removal (i.e. death) 

of nodes as a result of worm attack or due to hardware/software 

failure. All sensor nodes are susceptible to potential of worm 

attack and with time (probably) get infected (i.e. forming nodes 

in the Infectious compartment). Some sensor nodes before 

becoming infectious exists in the Exposed stage where the worm 

is latent and the nodes cannot transmit the infection. A symptom 

of this stage is slower data transmission for affected nodes. 

However, due to the existence of several worm variants in 

cyberspace the sensor nodes never acquire a permanent 

immunity i.e. they become susceptible to worm infection with 

time.  

The total population N (t) represents the nodes in the Wireless 

Sensor Network which is subdivided into Susceptible, Exposed 

(latent), Infectious (contagious), Recovered (temporarily 

immune), Vaccinated (immunized) denoted by S( t), E(t), I(t), 

R(t) and V(t).  This implies that S (t) + E (t) + I (t) + R (t) + V 

(t) = N (t).  

Specifically, the sensor nodes are uniformly and randomly 

deployed with a distribution density of σ and a transmission 

range of    
  , this implies that the effective contact with an 

infected node for transfer of infection is in the order of     
 . 

Other parameters include   which is the inclusion rate of nodes 

into the sensor network population,   is the Infectivity contact 

rate,   is the mortality or the death rate of nodes due to hardware 

or software failure,   is the crashing rate due to attack of 

malicious objects (in this case worm),   is the rate at which 

exposed nodes become infectious,   is the recovery rate,   is the 

rate at which recovered nodes become susceptible to infection, 

  is the rate of vaccination for susceptible sensor nodes and   is 

the rate of transmission from the Vaccinated compartment to the 

Susceptible compartment.  
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Figure 1. Schematic diagram for the flow of worms in sensor 

network 
 

The schematic diagram for the dynamical transmission of worms 

in a Wireless Sensor Network given our assumption is depicted 

in Fig. 1. The system of differential equation (1) is adapted from 

[9] but modified to capture distribution density and transmission 

range.  

 

The modified SEIRS-V model is represented using the following 

system of differential equations; 
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3.2 Solutions of Equilibrium Points 
We equate the modified system of differential equations (1) to 

zero i.e.  
  

  
    

  

  
    

  

  
    

  

  
    

  

  
  ; to obtain two 

solutions which are the Worm-free equilibrium and the Endemic 

equilibrium points. The Worm-free equilibrium describes the 

absence of worms while the Endemic equilibrium describes the 

presence of worms in the Wireless Sensor Network using 

formulated mathematical model. 
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A cursory look at the symbolic solutions of the endemic 

equilibrium in [9] shows the differences. It is observed here that 

the expression for uniform distribution deployment formed part 

of the solutions; this is absent in the solutions of [9].  

3.3  The Basic Reproduction Number 
The Reproduction number commonly denoted as    is a 

threshold quantity defined as “the expected number of secondary 

cases produced in a completely susceptible population, by a 

typical infective individual” [1] or the spectral radius which can 

also be referred to as the “dominant eigenvalue of the matrix G 

= FV-1” [2], [9]. Some authors also refer to it as the inverse of 

the susceptible (   
 ) at the endemic equilibrium [10]. The 

Reproduction number (   ) is  
      

 

(   )(     )
.                                                       

(4) 

 

In this study, the Reproduction number is different from what 

was obtained in [15] and [9] . Our Reproduction number can be 

used to determine the possible contained/endemic dynamics of 

worm propagation in WSNs considering distribution density and 

transmission range.  
 

3.4 Stability of the Worm-free 

Equilibrium point 
We show the proof of local asymptotic stability at the Worm-

free Equilibrium using the jacobian method. This is done by 

showing that “the eigen-values of the jacobian matrix all have 

negative real parts” [9] or that the “characteristic equation of the 

jacobian matrix” derived from the system of equations has 

negative roots [8].  

 

Theorem: The worm-free equilibrium is locally asymptotically 

stable if    < 1 and unstable if    > 1. 

 

Proof: Using   
  - the characteristic equation of system (1) at 

worm-free equilibrium is 
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which equates to;  (   )(       )(    

 )((     )(       )    
       

 )   .      (6) 

The roots of the characteristic equation all have negative real 
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Therefore the worm free equilibrium is locally asymptotically 

stable.  

 

 

4. NUMERICAL RESULTS AND 

DISCUSSION 
We solved the system of differential equation using a numerical 

method i.e. Runge-Kutta Fehlberg method of order 4 and 5. 

Subsequently we performed simulation experiments using this 

following initial values for the Wireless Sensor network: S=100; 

E=3; I=1; R=0; V=0. Other values used for the simulation 

include  =0.33;         =0.003;  =0.07;  =0.25   =0.4; 

 =0.3;  =0.3    =0.06; adapted from the time history of [9]. We 

compared our results with the results of similar models in 

literature for the purposes of verification and validation.  

 

Figure 2 shows the time history of the compartments used for 

the analyses. Note that the transient response of Figure 2 

simulated with values for distribution density and transmission 

range differs from the time history of [9]. For the sake of clarity 

and ambiguity reduction we prepared the simulation experiment 

of Figure 2 using the same colors used in Figure 3. It is evident 

that our model showed increase in both the Exposed and 

Infected compartments and a reduction in both the Susceptible 

and Vaccinated compartments.  

 
Figure 2. Dynamical behaviour of the system for different 

compartments of the modified model 

 

 

 

 

 

 

 

 

 

Figure 3. Dynamical behaviour of the system for different 

compartments of the equivalent model 

Source: [9] 

 

Figure 4 shows the dynamical behavior of the Exposed 

compartment with respect to changes in the distribution density 

and transmission range. At 0.5 and 2.0 for density and range 

respectively depicted with red, there was still an increase in the 

number of Exposed sensor nodes even though the range was 

kept constant (like in first response depicted with green). The 

effect of both density and range was again evident in the third 

response (0.7 and 2.5 for density and range respectively) 

depicted with blue when compared with the first response where 

0.3 and 2.0 for density and range respectively.  

 
Figure 4. Dynamical behaviour of Exposed Compartment 

versus Time w.r.t. to σ and   
  

 

Figure 5 shows the dynamical behavior of the Infectious 

compartment with respect to changes in the distribution density 

and transmission range. At 0.5 and 2.0 for density and range 

respectively depicted with red, there was still an increase in the 

number of Infectious sensor nodes even though the range was 

kept constant (like in the first response depicted with green). 
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The effect of both density and range was again evident in the 

third response (i.e. 0.7 and 2.5 for density and range 

respectively) depicted with blue when compared with the first 

response where 0.3 and 2.0 for density and range respectively.  

 
Figure 5. Dynamical behaviour of Infectious Compartment 

versus Time w.r.t. to σ and   
  

 

Figure 6 shows the dynamical behavior of the Infectious 

compartment plotted against the Exposed compartment with 

respect to changes in the distribution density and transmission 

range. This figure showed how both the Exposed and Infectious 

compartments increased with increase in density and 

transmission range. The increase was observed when density 

was kept constant (at 0.5) and when range was kept constant (at 

0.2). The difference between the Exposed and Infectious sensor 

nodes is in line with the real world because even though both 

have contacted the infection, only the Infectious sensor nodes 

can transmit the infection to susceptible nodes.  

 
 

Figure 6. Dynamical behaviour of Infectious Compartment 

versus Exposed Compartment w.r.t. to σ and   
  

Figure 7 shows the dynamical behavior of the Susceptible 

compartment plotted against the Vaccinated compartment with 

respect to changes in the distribution density and transmission 

range. This figure showed a decrease in both the Susceptible and 

the Vaccinated compartments.  The decrease was observed when 

density was kept constant (at 0.5) and when range was kept 

constant (at 0.2); this is clearly visible when compared to Figure 

7a.  

 
 

Figure 7. Dynamical behaviour of Susceptible Compartment 

versus Vaccinated Compartment w.r.t. to σ and   
  

 

 
Figure 7a. Dynamical behaviour of Susceptible 

Compartment versus Vaccinated Compartment of the 

equivalent model as adapted from [9] 

From our simulation experiments we noticed that at transmission 

range of 1 and density of 0.3 depicted in Figure 8 the dynamical 

responses were close to Figure 3 of [9] for the Exposed and 

Vaccinated compartments. Increasing the range to 2 (as evident 

in Figure 2) visibly changed the behavior of the compartments 

(most especially Exposed and the Vaccinated). The Exposed 

nodes moved from above 30 nodes to above sixty nodes while 

Vaccinated nodes reduced to slightly above 20 nodes from 

above 40 nodes.  

 

 

Figure 8. Dynamical behaviour of Infectious Compartment 

versus Exposed Compartment w.r.t. to σ=0.3 and   
 =1 

 

 

 

 

0 50 100 150
0

5

10

15

20

25

30

Time in Minutes

In
fe

ct
io

u
s 

S
en

so
r 

N
od

es

Infectious Sensor Nodes against Time

density = 0.3, range = 2.0

density = 0.5, range = 2.0

density = 0.7, range = 2.5

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

Exposed Sensor Nodes 

In
fe

ct
io

u
s 

S
en

so
r 

N
o

d
es

Graph of Infectious Nodes Plotted against Exposed Nodes

density=0.3,range=2.0
0
density=0.5,range=2.0
0
density=0.5,range=2.5
0

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Vaccinated Sensor Nodes

S
u

sc
ep

ti
b

le
 S

en
so

r 
N

o
d

es
 

Graph of Susceptible Nodes Plotted against Vaccinated Nodes

density=0.3, range=2.0

0

density=0.5, range=2.0

0

density=0.5, range=2.5

0

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Time in Minutes

P
o

p
u

la
ti

o
n

 C
o

m
p

ar
tm

en
ts

 S
, 

E
, 

I,
 R

, 
V

Poplation CompartmentsS,E, I, R, V against Time 

Susceptible

Exposed

Infectious

Recovered

Vaccinated

V

E

R

I S



63 
 

5. CONCLUSION AND FUTURE 

DIRECTION 
In this study, we discovered that the increase in density and 

transmission range increased the Exposed and Infectious 

compartments and decreased and Vaccinated compartments. 

This study is consistent with [15] and [16] that employed similar 

expression for uniform random distribution i.e. the increase in 

the number of Infectious sensor nodes with the increase in both 

the node density and communication range. 

 

Due to the effect of uniform random distribution on Vaccinated 

sensor nodes, it is only wise that the rate at which nodes are 

immunized is increased as density and range increase in order to 

reduce high susceptibility to infection. In future we would focus 

our analyses on how to achieve increased vaccination rate for 

vulnerable sensor nodes (to ensure reduced susceptibility to 

infection) in the light of increased density and increased 

communication/transmission range. 

 

Furthermore, we would also perform analysis and simulation 

experiments to observe the effect of uniform random distribution 

on Quarantine models. In addition, pursuit of other mathematical 

objectives such as extending analyses to the global stability at 

the endemic equilibrium using the geometrical approach of [7] 

etc. can ensue; since the symbolic solutions at the endemic 

equilibrium have been provided by this study. To creatively 

protect the interchange of data and information the generalized 

form of the analytical model (that characterizes other worm 

variants) will be integrated into the cyberspace defense structure 

of organization(s) that use Wireless Sensor Networks for 

monitoring rebel activities, detecting enemy movements, and 

providing smart healthcare etc. 
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